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The Orphan Drug Act (ODA) was designed to spur the development of drugs for rare diseases. In principle,
its design also incentivizes pharmaceutical firms to develop drugs for “rare” subdivisions of more prevalent
diseases. I find that in response to this incentive, firms develop drugs for ODA-qualifying subdivisions of
non-rare diseases. The impact in these tailored drug markets represents half of the total R&D response
to the ODA. I also find that 10-percent of the innovation in subdivided disease drugs induced by the
ODA would have been conducted without the policy. While modest in size, this inefficiency suggests that
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agency problems should be considered when designing innovation policy.
© 2009 Elsevier B.V. All rights reserved.
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. Introduction

A widely held view is that market failures lead to inefficient
llocation of R&D investments. If so, there is scope for the devel-
pment of welfare-improving policies to alter firms’ R&D activities.
hen it is impractical to implement optimal corrective measures,

ncentive mechanisms are chosen from the set of available “second-
est” policies. These policies are designed to stimulate private R&D

nvestments; at the same time, they are thought to be associated
ith inefficiencies (Arrow, 1962; Lazear, 1996; Hall, 2002). Despite

ts importance for innovation policy, little empirical work has been
evoted to studying how specific policy mechanisms affect private

nnovation, or to identifying empirically the source and extent of
nefficiencies related to the design of incentives.

In this paper, I study these issues in the context of pharma-

eutical innovation. The pharmaceutical industry has been one
f the most innovative industries over the past half century, and
ne whose innovations embody substantial technological progress
Lichtenberg and Virabhak, 2002). Specifically, I study the private
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o Honore, Dean Karlan, Jeff Kling, Rachel Kranton, Adriana Lleras-Muney, Chunhui
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wo anonymous referees for helpful comments.
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&D investment response to incentives created by the Orphan Drug
ct (ODA). Passed in 1983, the ODA established supply and revenue-
ide incentives to stimulate drug development for rare diseases,
efined as diseases with prevalence less than 200,000 Americans.
assage of the ODA provides an ideal setting in which to test
hether tools at the disposal of policy-makers are able to stimulate

nnovation in areas where private R&D is deemed inadequate.
Previous studies of the ODA estimate a significant private

&D response to incentives created by the ODA (Lichtenberg and
aldfogel, 2003; Yin, 2008). Yin (2008) finds a significant increase

n the flow of new clinical trials for drugs treating rare diseases
mmediately after the ODA was passed relative to the flow of new
rug trials for a set of control diseases—uncommon disease but with
revalence slightly above the ODA threshold. The set of diseases
omprises nearly twelve hundred low-prevalence diseases known
o exist at the time the ODA was passed. As such, these diseases rep-
esent a set of the most widely recognized, long-established, rare
iseases that lawmakers hoped would be affected by the ODA.

Notably, these studies focus only on traditionally defined rare
iseases, and do not study the impact of the ODA on innovation

n more prevalent, non-rare disease drug markets. While the ODA
as created to spur the development of drugs for traditionally

efined rare diseases, its design may also have encouraged firms
o define and then to develop drugs tailored to treat distinct sub-
ets of patients within traditionally defined disease populations.
nder the ODA, subdivisions of traditionally defined diseases qual-

fy as rare in and of themselves so long as the patients carved out by

http://www.sciencedirect.com/science/journal/01676296
http://www.elsevier.com/locate/econbase
mailto:wyin@uchicago.edu
dx.doi.org/10.1016/j.jhealeco.2009.06.011
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rms for clinical drug trials number fewer than the ODA prevalence
hreshold. This holds even if the prevalence of the unsubdivided tra-
itionally defined disease exceeds 200,000. (Henceforth, I refer to
hese disease subdivisions as “ODA-qualifying subdivisions.”) Con-
istent with these ODA incentives, the post-ODA period is witness
o a profusion of clinical trials for drugs indicated for newly defined
iseases that distinguish patients according to their heterogeneous
rug response, co-morbidities, or disease severity, each of which
lter the risk–benefit profile of drug utilization.1 The potential
mpact of the ODA on greater “personalization” in pharmaceutical
reatment has significant clinical implications. Indeed, the use of
enetic and genetic-environmental markers to distinguish patients
ho share the same traditionally defined disease phenotype by

heir drug response is widely thought to be a potential basis of
uture drug innovation (Collins et al., 2003; Couzin, 2005; Aspinall
nd Hamermesh, 2007). Yet to date, little attention has been paid
o the economic principles underpinning innovation in these mar-
ets. The ODA offers a unique opportunity to study how innovation
olicy can affect pharmaceutical R&D, particularly in the emergent
nd clinically important market for more personalized drugs.2

In this study, I use the passage of the ODA to test whether
rms respond to innovation incentives. In particular, I investi-
ate whether the ODA spurred innovation in drugs that treat
DA-qualifying subdivisions of non-rare diseases—a behavior I call

indication-subdividing.” To estimate the impact of the ODA on
ndication-subdividing, I construct a unique dataset of new clinical
rug trials conducted in the US. I then estimate the extent to which
rms conduct new drug trials for ODA-qualifying subdivisions of a
et of long-established, traditionally defined, diseases.

One challenge in conducting this analysis is to designate control
iseases to capture secular trends in pharmaceutical R&D unre-

ated to the passage of the ODA. Simply estimating the change in
he extent of indication-subdividing around the passage of the ODA
aptures both the response of interest as well as changes in pharma-
eutical market coinciding with the ODA. At first glance, it would
eem that the ODA created incentives for firms to subdivide any
raditionally defined disease, leaving no obvious set of diseases to
unction as a control. However, I show that firms have an incentive
o subdivide only those diseases with prevalence slightly higher
han 200,000, i.e. “uncommon non-rare diseases.” Diseases that
rms have no incentive to subdivide in response to the ODA are
sed as controls. I interpret increases in the flow of R&D for ODA-
ualifying subdivisions of uncommon non-rare diseases, netting
ut observed subdividing for control diseases, as an estimate for
he predicted behavior.

The intuition guiding this prediction is straightforward. Conven-
ionally, a firm conducts clinical trials to test a drug on patients it

elieves the drug will benefit. Once the drug is approved by the
DA, the firm can market the drug for the purpose indicated on its
rug label—i.e. treatment of the disease population on which the
rug was tested and for which it was approved. The ODA subsidizes

1 Patients with the same disease phenotype may differ in their etiology or clinical
esponse to therapy. These differences give firms an incentive to develop differ-
ntiated drugs to capture a subset of patients for which the drug is clinically most
ppropriate. Examples of subdivided diseases include late-stage type-IV Parkinson’s
isease and relapsing and remitting multiple sclerosis (MS). Note that while Parkin-
on’s disease and MS have estimated prevalence that exceed 200,000, late-stage type
V Parkinson’s disease and relapsing and remitting MS have estimated prevalence
elow 200,000, and are considered rare diseases for purposes of the ODA.
2 Emphasis on personalized drugs has increased with a better understanding

f how differences in genetic or genetic-environmental interactions lead to het-
rogeneous drug responses. Partitioning diseases according to “genotype drug
esponse phenotype” necessarily segments existing markets into small component

arkets—a fact widely recognized as an economic impediment to innovation in
ersonalized medicine (Garrison and Austin, 2006).
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he development costs for drugs that treat patient populations with
revalence under 200,000, making it profitable for firms to carve
ut an ODA-qualifying subdivision of non-rare disease populations
or clinical drug trials. However, indication-subdividing comes at

cost to the firm. By law, firms are prohibited from marketing
heir drugs for off-label uses (i.e. for patients with diseases not
xplicitly indicated on the approved drug label). For drugs with
large potential market, indication-subdividing leads to lost rev-

nues from diminished sales to patients comprising its off-label
arket. If the off-label market is sufficiently large, then revenues

ost will outweigh the benefits of the ODA incentives, making
ndication-subdividing an unprofitable strategy. Similarly, firms
ave little incentive to subdivide drug markets which, unsubdi-
ided, already qualify as rare (traditional diseases with prevalence
elow 200,000). Firms thus have the greatest incentive to subdi-
ide diseases with prevalence just above the ODA threshold—i.e.
ncommon non-rare diseases.

I use a difference-in-differences strategy to estimate the extent
f indication-subdividing (as measured by the flow of new clinical
rug trials for ODA-qualifying subdivisions of traditionally defined
isease) for a sample of uncommon non-rare diseases. Otherwise
imilar diseases with slightly lower or higher prevalence are used
s controls. I estimate a substantial increase in the flow of new
linical drug trials for ODA-qualifying subdivisions of uncommon
on-rare diseases relative to control diseases after the ODA was
assed. As an alternative identification strategy, I exploit time series
ariation in rare-disease status for a small set of “status-changer”
iseases—diseases that are rare at the start of the study period
ut grow in estimated prevalence to a level slightly above the
00,000 threshold at some point during the study period. Consis-
ent with the predicted impact of the ODA, I estimate a significant
nd immediate increase in the flow of new clinical trials indicated
or ODA-qualifying subdivisions following the loss of rare-disease
tatus.

Note that subdividing may not necessarily represent new inno-
ation. New clinical trials for ODA-qualifying subdivisions may
epresent R&D by firms which strategically redefine indications for
rugs that would have been developed in the absence of the ODA.
hus, one challenge in interpreting the evidence is to quantify the
xtent to which new clinical trials for newly defined subdivided dis-
ase indications represent R&D that would have been conducted
n the absence of the ODA. In drug markets where indication-
ubdividing occurs, some firms can earn rents in exchange for
enerating little new innovation.

Inefficient use of the ODA in this way is an empirical example of
principal-agent problem that can arise in any policy setting that

ubsidizes unobservable R&D. In these settings, firms can exploit
he inability of asymmetrically informed regulators (in this case, the
DA or the tax authorities) to monitor pharmaceutical R&D effort;
oing so allows firms to claim the subsidy while directing actual
ffort towards more lucrative projects, or towards projects that
ould have been undertaken in absence of the subsidy (Kremer,

001; Hall, 2002). These principal-agent problems may also arise
n more general settings. They may appear in both the basic research
nd the private R&D settings, and have motivated an extensive the-
retical literature on optimal subsidy and compensation contracts.3

et it is not clear to what extent information asymmetries lead

o inefficiencies, particularly in the public R&D policy setting. The
&D data collected for this study capture the timing of new clin-

cal trials, and identify the specific disease for which drugs under
evelopment are being tested. The disaggregated nature of the data

3 See Lazear (1996) and Hall (2002) for reviews of this literature.
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rovides traction to study how agency problems associated with
upply side R&D incentives leads to inefficiencies.

In an attempt quantify this type of inefficiency in the ODA,
estimate to what extent new clinical trials for ODA-qualifying

ubdivisions of uncommon non-rare diseases are offset by simul-
aneous declines in new clinical drug trials for the corresponding
nsubdivided traditionally defined disease indications. Calculations
present at the end of this paper indicate that roughly 10-percent of
he estimated impact of the ODA on indication-subdividing would
ave been conducted in the absence of the policy. These results sug-
est that the ODA generates new R&D, particularly (and arguably
nintentionally) in the direction of more personalized drugs with
he potential to better-tailor drug therapies to patients. However,
he evidence on inefficiencies adds a cautionary note, suggesting
hat concerns over agency costs associated with policies that sub-
idize unobservable effort may be well-founded.

This paper proceeds as follows. Section 2 describes the Orphan
rug Act and discusses the theoretical predictions of the ODA on

he behavior of firms. Section 3 outlines the empirical strategy to
est those predictions. Section 4 reports results of empirical anal-
ses. Section 5 quantifies the extent of indication-subdividing and
gency-related inefficiencies. Section 6 concludes.

. Orphan drug act

.1. ODA incentives

Between 1973 and 1983, only 10 drugs were marketed for rare-
isease indications; and only 36 drugs had ever been approved for a
are disease by 1982 (HRSR, 1982). Pharmaceutical firms, however,
requently possessed drugs with potential benefits to rare diseases.
et because these drugs were either not patentable or too costly
o take through clinical trials (particularly in comparison to their
ow commercial demand) these drugs were “orphaned.” These facts

otivated passage of orphan drug legislation.
The 1983 Orphan Drug Act established two main incentives for

rms to develop rare-disease drugs: an income tax credit equal
o 50-percent of clinical trial expenses, and a marketing exclusivity
rovision.4 The aim of the credit was to lower the cost of conducting
uman clinical trials. Clinical trials are conducted to test for safety
nd efficacy in order to gain marketing approval by the Food and
rug Administration (FDA), and account for approximately two-

hirds of the total expenditures associated with drug development
DiMasi et al., 2003).
The original ODA was amended in 1984 to define orphan drugs
o be those that treat diseases with prevalence below 200,000
mericans.5 Sponsors of clinical trials submit applications to the
DA’s Office of Orphan Product Development (OOPD) with epi-

4 The ODA market exclusivity provision lasts seven-years starting from the drug’s
DA approval date, and prevents competitors from marketing the same drug for
he same approved rare disease. A competitor can still market the same drug for
ny other disease. While the market exclusivity provision is substantially narrower
han a patent, it is beneficial for the development of drugs with little to no patent
rotection (e.g. naturally occurring compounds, drugs whose benefit and structure
ave been publicly disclosed, or drugs whose remaining patent life is short). A clin-

cal superiority provision was added in 1991 to prevent competitors from making
osmetic changes to a drug and marketing it for the same rare disease. The 1991
mendment applies only when contested drugs share the same macromolecule; a
ompeting firm may still seek approval for a distinct drug to treat the same disease,
rrespective of the drug’s clinical superiority.

5 The 1983 ODA initially defined drugs that “lack commercial value” due to a
mall patient market to be orphan drugs. The difficulty associated with establishing
nprofitability was blamed for the negligible R&D response by firms after the ODA
as passed in January 1983. The relevance of the ODA is widely thought to have
egun after the 1984 ODA amendment (Rohde, 2000).
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emiological evidence that the drug treats a condition that has
revalence less than 200,000. The OOPD designates the drug an
rphan if the evidence sufficiently and reliably supports that claim.
irms acquire the tax credit after their drug receives orphan desig-
ation.

.2. Predicted impact of the ODA drug development

Consider all patients afflicted with a given traditionally defined
isease. While these patients exhibit the same disease phenotype,
hey may differ in their clinical response to a given drug. A circular
ddress model following Salop (1979) captures this heterogene-
ty, where patients with a given traditionally defined disease are
niformly distributed on a circle. Drugs are positioned at a finite
umber of locations on the circle. The clinical benefit of a given drug
o a given patient is represented by the distance between them. On
he production side, drug development has two cost components:
fixed cost of R&D and a marginal cost of drug production. For a

iven disease (and hence, a given drug market size �), firms com-
ete in a free-entry environment to develop drugs for patients on
he disease circle.

Firms enter until revenues just offset the fixed costs of develop-
ent. The equilibrium number of evenly spaced drugs, No, depends

n several parameters: the fixed cost of drug development, the
arket size (which can also be interpreted as disease prevalence

r expected revenue per patient), and the intensity with which
istance to drugs affects utility. In equilibrium, the levels of R&D

ncrease in market size. For very low-prevalence diseases, there
s no entry because revenues are unable to offset the fixed cost
f development. The ODA incentives are modeled as a decrease in
he fixed cost of drug development.6 This leads to higher levels of
nnovation, NODA, in drug markets that qualify as rare under the
DA (� < 200,000); and leads to a decrease in the no-entry mar-
et size. These predictions are formally modeled and investigated
mpirically by Yin (2008).

The present study examines the potential impact of the ODA on
nnovation in non-rare disease drug markets (� > 200,000). Under
he ODA, subsets of these patients also qualify as having a “rare” dis-
ase so long as the distinct patient populations carved out by firms
or clinical trials number less than 200,000. Consequently, firms
ave an incentive to first identify, and then to develop drugs tailored
o, ODA-qualifying subdivisions of non-rare disease populations.

In the baseline model described above, firms choose the quan-
ity of drugs to produce, Q, and price, P, to maximize profits. Further,
free-entry and a covered-market condition (so that every patient
as unit consumption: Q = �/No) must hold in equilibrium. Now, I
llow firms to partition a traditionally defined disease indication
nto (1) an on-label drug market Q1 (the ODA-qualifying patient
opulation for which it is tested and FDA approval is sought); and
2) an off-label market, Q − Q1 (i.e. all other patients with the tradi-
ionally defined disease but who do not share the same treatment
esponse profile of the patients carved out in Q1). By redefining a

rug’s indication to an ODA-qualifying on-label population, the No

rms obtain the ODA tax subsidy on clinical trials costs. These No

rms earn positive profits, thereby encouraging entry of additional
rugs. Entry generates a new zero-profit “subdividing” equilibrium,

6 The effect of the ODA necessarily includes the impact of both the tax incentive
nd the market exclusivity provision. For simplicity, I model only the tax incentive.
he market exclusivity provision could be modeled as some proportional increase

n effective market size or revenue, c�, for c > 1. Note that the tax credit and the
arket exclusivity provision affect innovation in the same direction, and both affect

nnovation discontinuously at the 200,000 prevalence threshold. Thus, it is sufficient
o show that one of the incentives leads to the subdividing behavior at the focus of
his study.
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Sub, characterized by a larger number of drugs relative to the
o-ODA equilibrium, No. In the new equilibrium, average distance
etween patients and their nearest drug decreases. It is in this sense
hat the ODA fosters greater personalization in drug markets. This
ncrease in subdividing can be tested empirically.

Note that in reality, each of the NSub drugs will be indicated for a
ubdivided disease. However, only (NSub − No) drugs represent new
nnovation; No drugs would have been introduced in the absence
f the ODA, and do not represent new innovation. Neither the FDA
or the tax authority can observe which drugs would have been
eveloped in the absence of the ODA. Consequently, all NSub firms
btain the ODA incentives. The subsidy for No drugs (which would
ave been conducted in absence of the ODA, and which, in the sub-
ividing equilibrium, are indicated for ODA-qualifying subdivisions
f non-rare diseases) represents an agency-related inefficiency of
he policy.

An important prediction of the model is that the subdividing
quilibrium obtains in only certain markets. This fact guides the
pecification of treatment and comparison diseases when estimat-
ng the extent of indication-subdividing in response to the ODA.
ntuitively, firms have little incentive to subdivide a traditional
isease that is already rare; they can obtain tax credits without
ubdividing these patient populations. Likewise, firms have lit-
le incentive to subdivide diseases with high prevalence. While
hysicians are legally permitted to prescribe drugs off-label, firms
re prohibited from advertising off-label uses of drugs to either
atients or to physicians. Sales of drugs for off-label uses depend on
nowledge of these non-approved uses diffusing through the medi-
al community, a process which may be slow. For drugs that benefit
ery large patient populations, the loss in revenues associated
ith restrictions on off-label marketing outweighs the immedi-

te benefit of the ODA tax credit. Indeed, beyond some threshold
arket size, �Sub, it is unprofitable for firms to engage in indication-

ubdividing.
More formally, note that the subdividing equilibrium will obtain

nly if the No firms in the prevailing equilibrium find it profitable
o deviate by engaging in indication-subdividing. For the present
urpose, it is not important to solve for the new equilibrium; it
uffices to solve for �Sub, the market size at which the firms no
onger earn positive profits by subdividing drug indications. This
llows me to evaluate revenues at the prevailing equilibrium price
ithout solving explicitly for the new zero-profit equilibrium under

ubdividing.7

In the prevailing no-subdividing equilibrium, total market rev-
nue (of all symmetric, evenly spaced, firms) for a given disease’s
rug market of size � is simply RNoSub = �p, where p is the equilib-
ium unit price of the drug in the no-subdividing, no-ODA regime.
he revenue can also be rewritten as RNoSub = k�1p, where k is
he constant multiple of the ODA-qualifying subdivision,�1, that
efines the total size of the unsubdivided disease’s drug market,
. (Clearly, firms choose �1 to be 200,000, the ODA’s maximum
revalence for a rare disease.)

The incentive for firms to subdivide drug indications stems from
he ODA incentives for low-prevalence diseases, which I model as a
ax subsidy on clinical trials costs. ODA-qualifying drugs have costs

ODA = ˛F, where 0 < ˛ < 1 Firms will earn positive profits by deviat-
ng from the prevailing equilibrium by subdividing diseases with
revalence slightly higher than 200,000. Indication-subdividing
ill remain profitable for firms for all � until revenues in the subdi-

7 There is no closed-form solution to the number of competing drugs in subdi-
iding equilibrium, NSub; however it is straightforward to show that NSub exceeds
he number of drugs in the prevailing no-ODA, no subdividing equilibrium, No , in

arkets where the subdividing equilibrium obtains.

a
r
t

C
a
r
F

mics 28 (2009) 950–962 953

iding equilibrium RSub = ˛RNoSub.8 (For larger drug markets, firms
ain the ODA subsidy, but lose more revenue in the conversion
f their drug’s potential market to off-label status.) Collectively,
he firms in a given market � earn RSub = �1p + �·p(� − �1), where

parameterizes the fraction of revenues from off-label sales that
he firm is able to earn despite marketing restrictions. Tighter
estrictions implies � is closer to zero. �Sub can roughly be found
y solving for the k that satisfies (RSub/RNoSub) ≈ ˛. This yields
≈ (1 − �)/(˛ − �). Consistent with the intuition of the descriptive
odel, �Sub depends on the degree to which marketing restric-

ions limit revenue from off-label sales. Tighter restrictions imply
smaller value for �Sub.

In summary, the model predicts a sharp discontinuity at 200,000
n prevalence in the incentive to subdivide disease markets; it also
redicts a sharp decline in the incentive to subdivide diseases that
ave prevalence higher than �Sub. Specification of �Sub for the empir-

cal analysis is discussed in the Section 3.

. Empirical strategy

.1. Control diseases

The empirical analysis relies on a comparison between uncom-
on non-rare diseases (for which I predict the ODA will have had an

mpact on indication-subdividing) and control diseases (diseases
ith prevalence slightly below 200,000 or those with prevalence

bove �Sub). A rough calibration of the model guides the choice of
Sub for the empirical analysis. The ODA subsidizes 50-percent of
uman clinical trials costs. Studies suggest that human clinical tri-
ls account for roughly two-thirds of all development costs (DiMasi
t al., 2003). Therefore, the ODA lowers total development costs for
DA-qualifying drugs by roughly one-third (˛ = 2/3). To determine
value for �Sub, I solve for the k that satisfies (RNoSub/RSub) = 2/3. This
ields k = (1 − �)/(2/3 − �). Complete loss of off-label revenue (� = 0)
uggests that the cut-off prevalence, �Sub, is (3/2)·�1 = 300,000. Per-
aps a more reasonable calibration suggests that one-quarter to
ne-half of potential revenue is lost due to off-label restrictions.
his implies the cut-off prevalence of roughly (5/2)·�1 to 3·�1 (or
oughly 500,000 to 600,000). Therefore, I define uncommon non-
are diseases to be diseases with prevalence between 200,000 and
00,000.

.2. Data

The sample of diseases I use in this study come from a list dis-
ases published by the National Organization for Rare Disorders
NORD), a not-for-profit agency established in 1983 to serve as a
learinghouse for information on uncommon and rare diseases.
hey publish a database of 1177 low-prevalence diseases known
o exist at the time the ODA was passed. As such, these represent a
arge set of widely recognized, long-established, rare diseases that
awmakers hoped would be affected by the ODA. Given that the ODA
somewhat arbitrarily) set 200,000 as the rare-disease prevalence
hreshold, not all the diseases in the NORD list are rare. Indeed,
llowed me to partition the NORD list into three groups: (1) 1023
are diseases, defined as those with prevalence below the 200,000
hreshold throughout the study period (nine of which have an

8 Technically, incumbents will cease to subdivide indications when
ostSub/CostNoSub = � = RSub/RNoSub , where CostSub/CostNoSub = (FODA + Qm)/(FODA/˛ + Qm),
nd m is the marginal cost of drug production. When Qm is small relative to F (as is
oughly the case with most drugs), then � ≈ ˛. Note that as Qm increases relative to
, �Sub increases.
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Fig. 1. New clinical drug trials for ODA-qualifying subdivisions of NORD diseases.

stimated prevalence between 100,000 and 200,000); (2) 148 non-
are diseases (of which 50 have prevalence between 200,000 and
00,000, and 98 have prevalence exceeding 500,000); and (3) six
status-changers” which move from being rare to non-rare during
he study period.

I collect data on the number of new clinical drug trials for a given
isease in a given year. New clinical trials (as opposed to new drugs
rought to market, or the stock of clinical trials) have the advan-
age of reflecting investment decisions based on current market
onditions.9 The principal sources of data on new clinical trials data
re two trade journals, The NDA Pipeline and Pharmaprojects, which
losely track clinical trials conducted by all major pharmaceutical
nd biotechnology firms, as well as many small manufacturers and
on-profit research institutions. The journals report on the clinical
rials for all chemical entities known to the publisher, and include
nformation on the indications for which a drug is being tested,
he phase of its development, and whether the product has been
reviously marketed. This information is used to identify when a
rug first appears in the pipeline for a specific disease indication.
he NDA Pipeline is also the principal source of data used in other
tudies of pharmaceutical R&D (Finkelstein, 2004).

I assemble my dataset by recording when new clinical drug trials
or diseases in the NORD list are first reported in these publications.
he final panel dataset lists the number of new clinical trials indi-
ated for each of the 1177 (unsubdivided) diseases in the NORD list,
y year. Appendix Table A1 describes in more detail the process by
hich new clinical trials are counted. I construct a second panel

ataset listing new trials indicated explicitly for ODA-qualifying
ubdivisions of NORD diseases. For example, a new clinical trial
or late-stage type-IV Parkinson’s disease appears as a new clini-
al trial in the second panel data set under Parkinson’s disease. To
rack ODA-qualifying subdivisions, I strictly follow the typology of
ubdivisions outlined in Appendix Table A2. The final data are two
alanced panels of clinical trial counts for the NORD diseases from
981 through 1994.

The total number of new clinical trials for ODA-qualifying sub-
ivisions of NORD diseases, grouped by the disease prevalence
ategory over time is shown in Fig. 1. There is a noticeable increase
n the relative number of new trials for ODA-qualifying subdivisions

f uncommon non-rare diseases (those with prevalence between
00,000 and 500,000) starting in 1984. Summary statistics for the
umber of new clinical trials for ODA-qualifying subdivisions of
raditional NORD diseases for 2 representative years are shown in

9 Clinical trials often span more than 17 years (DiMasi et al., 2003), so measuring
ow of new clinical trials avoids the problem of capturing decisions based on past

nvestment climates.
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able 1 Panel A. The mean and distribution of counts by treat-
ent group are shown for 1983 and 1985, the year before and

fter the critical 1984 amendment to the ODA was passed. Uncom-
on non-rare diseases experience the largest relative increase in

&D, a pattern consistent with Fig. 1. Note that the mass of the
ounts clearly lies at zero, and the data tend to be over-dispersed.
urther, the distribution of counts differs by group. These char-
cteristics motivate the use of count regression models. Table 1
anel B shows the summary statistics of the clinical trials for the
rugs indicated for (unsubdivided) traditionally defined NORD dis-
ases.

.3. Estimation framework

The empirical analysis relies on a comparison of uncom-
on non-rare diseases to control diseases. I interpret additional

hange in the flow of ODA-qualifying subdivisions of uncommon
on-rare diseases to be an estimate for the extent of indication-
ubdividing.

.3.1. Prediction 1: incentive to subdivide around 200,000
To estimate the extent of subdividing for non-rare diseases, I use

difference-in-differences (DD) approach that compares the num-
er of clinical trials for ODA-qualifying subdivisions of uncommon
on-rare diseases to those of rare diseases, before and after the pas-
age of the ODA. I estimate the following equation for the sample
f uncommon non-rare and rare diseases:

STit = f

(
˛0+
∑

t

˛tYeart+ˇ1PostODAt+ˇ2Uncommon NonRarei

+ˇ3(PostODA ∗ Uncommon NonRare)it

)
+ εit . (1)

The outcome variable, NSTit, is the number of new clinical tri-
ls for an ODA-qualifying subdivision of a NORD disease i in year
. The variable Uncommon NonRare is an indicator for whether the
unsubdivided NORD) disease i has prevalence between 200,000
nd 500,000.10 The variable PostODA is an indicator for the
984–1994 post-ODA period. Single-year indicator variables are
ncluded to capture trends in clinical trials for all diseases in the
ample. The coefficient of primary interest is ˇ3, which measures
he increase in the yearly flow of new clinical trials for uncom-

on non-rare diseases after the passage of the ODA, beyond that
hich is observed for control diseases. In specifications that include

isease-specific fixed effects, the time-invariant effect of Uncom-
on NonRare is necessarily excluded.

In estimating Eq. (1), I am only able to use 3 years of data to
stablish the pre-ODA trend in the flow of new clinical trials. This
otivates an alternative identification strategy: estimating changes

n flow of new clinical trials for the six status-changer diseases
hose prevalence grew to slightly above 200,000 during the study

eriod. As a proxy for the date when the estimated prevalence of
tatus-changer diseases grew past 200,000, I use the year the OOPD

ast designated an orphan drug for that disease (Table 2). To iso-
ate the impact of a change in rare-disease status, I estimate the

10 Prevalence estimates for rare diseases found in the epidemiological literature
ften report a range of estimates (i.e. 1:10,000 to 1:5000, or 25,000 to 50,000). Other
eferences explicitly report point estimates with confidence intervals. Thus there is
ome degree of imprecision in prevalence point estimates. For this reason, it is more
ppropriate to compare sets of control diseases by prevalence categories, rather than
irectly regressing R&D effort on a continuous measure of disease prevalence.



W. Yin / Journal of Health Economics 28 (2009) 950–962 955

Table 1
Distribution of new clinical trial counts, by disease prevalence, for two representative years.

Rare Status changer Non-rare (200k–500k) Non-rare (>500k)

Panel A: number of new trials for ODA-qualifying subdivisions of NORD diseases
1983

0.001 (0.031) 0 0.020 (0.141) 0.010 (0.101)
75-percentile 0 0 0 0
90-percentile 0 0 0 0
95-percentile 0 0 0 0
99-percentile 0 0 1 1
Max 1 0 1 1
N 1023 6 50 98

1985
0.002 (0.044) 0 0.160 (0.468) 0.020 (0.142)

75-percentile 0 0 0 0
90-percentile 0 0 1 0
95-percentile 0 0 1 0
99-percentile 0 0 2 1
Max 1 0 2 1
N 1023 6 50 98

Panel B: number of new clinical trials for unsubdivided NORD diseases
1983

0.017 (0.135) 0.333 (0.516) 0.240 (0.591) 0.122 (0.503)
75-percentile 0 1 0 0
90-percentile 0 1 1 0
95-percentile 0 1 1 1
99-percentile 1 1 3 3
Max 2 1 3 3
N 1023 6 50 98

1985
0.048 (0.274) 1.000 (2.000) 0.380 (0.901) 0.082 (0.398)

75-percentile 0 1 0 0
90-percentile 0 5 2 0
95-percentile 0 5 3 1
99-percentile 1 5 4 3
Max 4 5 4 3
N 1023 6 50 98
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distributed as Poisson for consistent estimation of standard errors
is relaxed by estimating robust quasi-ML standard errors following
Wooldridge (1997,1999).
n Panel A, the first row reports the mean number of new clinical trials in 1983 for O
roup (standard deviations are reported in parentheses). The number of new clinic
elow. The summary table is repeated for 1985. Panel B shows the mean and distrib

ist for 1983 and 1985.

ollowing equation for only the 1984–1994 post-ODA:

STit = f

(
˛0 +

∑
t

˛tYeart + ˇ1StatusChangeri

+ˇ2Changed from Rareit

)
+ εit . (2)

The variable of interest is Changed from Rare, an indicator for
hen a status-changer disease loses its status as rare. The estimate

f ˇ2 represents the impact on the flow of new clinical trials for
DA-qualifying subdivisions of status-changer diseases due to los-

ng rare status. The model predicts ˇ2 will be positive. Consistent
stimation of ˇ2 requires that changes in disease prevalence are

xogenous to the outcome variable. This is likely to be the case
ince the changes in demographics and diagnostic techniques that
etermine prevalence are likely to be orthogonal to clinical trials
ffort.11

11 It is possible that innovation in drugs is associated with an improved ability to
iagnose a disease. Likewise, omitted variables, such as campaigns by drug manu-

acturers to raise awareness of diseases, would be associated with both greater R&D
evels and estimated prevalence (and loss of rare-disease status). These possibili-
ies bias the estimate of ˇ2 away from zero and over-estimate the ODA impact on
ubdividing. These endogeneity issues are unlikely to be significant in this setting

g
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i

ualifying subdivisions of NORD diseases. Means are reported by disease prevalence
ls counts at the 75th, 90th, 95th, and 99th percentile of the distribution are shown
of new clinical trials for unsubdivided, traditionally defined, diseases in the NORD

The functional form for Eqs. (1) and (2) is chosen to account for
he nature of the data. The flow of new clinical trials is non-negative,
nteger-valued, and has density at low values. This motivates use of
anel count regression models.12 Unlike the frequently employed
egative binomial (NB) models, which for consistent parameter
stimation requires that the data be distributed as NB (Hausman
t al., 1984), the Poisson panel model has the advantage of being
onsistent even when the data-generating process is misspecified
Cameron and Trivedi, 1998). The Poisson model is consistent under
he weaker assumption that the conditional mean is correctly spec-
fied as linear-exponential. Further, the requirement that counts be
iven that our measure of innovation is a new clinical trial. Unlike outcomes such
s newly approved drugs, new clinical trials (which may precede a drug approval
y a decade) are unlikely to influence awareness of a disease within the medical
ommunity. It may be that firms initiate disease awareness campaigns before drugs
re approved. However, this is more likely for prevalent diseases with large markets
nd potentially large profit potential.
12 The flow of new clinical trials for rare disease is smaller than for non-rare dis-
ases. The impact of the ODA on the flow of new trials for rare diseases may be small
n absolute magnitude; but relative to the pre-ODA flow of new trials, the post-ODA
ow may be large. The proportional impact is not captured in a linear model, but it

s captured in the exponential form of typical count models.
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Table 2
Status changers.

Disease Year drug last
designated to
treat disease

Current prevalence
estimate

Crohn’s diseasea 1999 400,000
Systemic lupus erythematosusb 1999 400,000
Multiple sclerosisc,d,e 1991 350,000
Sjogren syndromed,e, f 1992 2,000,000
HIV/AIDSg 1991 496,000
End stage renal diseaseh,i 1990 350,000
Interstitial cystitisj ,k 1991 500,000
Paget’s disease of the bonel 1990 2,000,000

Lists eight status-changer disease. Only six of the diseases experienced a change
in rare disease status during the period studied in this paper (1981–1994). The first
column lists the year the OOPD last designated a drug for that specific disease indica-
tion. Citations for specific epidemiological studies for diseases that lost rare-disease
status were provided by John McCormick of the OOPD, and are listed in the footnotes
to this table.

a Loftus, E.V., Schoenfeld, P., Sandborn, W.J., 2002. The epidemiology and natural
history of Crohn’s disease in population-based patient cohorts from North Amer-
ica: a systematic review. Aliment Pharmacol. Ther. 16 (January (1)), 51–60 (Medline
11856078).

b Hochberg, M.C., et al., 1995. Prevalence of self-reported physician-diagnosed sys-
temic lupus erythematosus in the USA. Lupus 4 (December (6)), 454–456 (Medline
8749567).

c Anderson, D.W., et al., 1992. Revised estimate of the prevalence of multiple scle-
rosis in the United States. Ann. Neurol. 31 (March (3)), 333–336 (Medline 1637140).

d http://www3.niaid.nih.gov/.
e http://www.niams.nih.gov.
f Division of Oral Medicine, University of Minnesota, 1999. Sjogren’s Syndrome.

Quintessence Int. 30 (October (10)), 689–699 (Medline 10765853).
g http://www.cdc.gov.
h Trivedi, H.S., Pang, M.M., Campbell, A., Saab, P., 2002. Slowing the progression

of chronic renal failure: economic benefits and patients’ perspectives. Am. J. Kidney
Dis. 39 (April (4)), 721–729 (Medline 11920337).

i Xue, J.L., Ma, J.Z., Louis, T.A., Collins, A.J., 2001. Forecast of the number of patients
with end-stage renal disease in the United States to the year 2010. J. Am. Soc. Nephrol.
12 (December (12)), 2753–2758 (Medline 11729245).

j Curhan, G.C., et al., 1999. Epidemiology of interstitial cystitis: a population based
study. J. Urol. 161 (February (2)), 549–552 (Medline 9915446).
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k http://www.niddk.nih.gov/.
l Altman, R.D., Bloch, D.A., Hochberg, M.C., Murphy, W.A., 2000. Prevalence of

elvic Paget’s disease of bone in the United States. J. Bone Miner. Res. 15 (March (3)),
61–465 (Medline 10750560).

.3.2. Prediction 2: diminishing incentive to subdivide more
revalent diseases

I estimate changes in the flow of new clinical trials for ODA-
ualifying subdivisions for uncommon non-rare diseases relative
o diseases with slightly higher prevalence. To do this, I partition
he 148 non-rare diseases in the NORD list into 50 “uncommon non-
are” diseases that have prevalence between 200,000 and �Sub, and
8 NORD diseases with prevalence exceeding �Sub. Simple model
alibrations performed in Section 3.1 suggest 500,000 as an esti-
ate for �Sub. I then estimate Eq. (1) comparing these two sets of

iseases. I interpret new clinical trials for ODA-qualifying subdivi-
ions of uncommon non-rare diseases – in excess of that which is
bserved for more prevalent non-rare diseases in the NORD list –
o be evidence of indication-subdividing in response to the ODA.

. Empirical results

The model presented in Section 2 suggests that there should
e a significantly greater incentive to subdivide uncommon non-
are diseases relative to control diseases that have slightly lower or

lightly higher prevalence. As an informal test of these predictions,
construct a variable that represents the fraction of all new clin-

cal trials for a given NORD disease devoted to an ODA-qualifying
ubdivision over the entire post-ODA period (1984–1994). Fig. 2
hows the predicted values of a non-parametric regression of the

i
a
m
w
v

Fig. 2. Indication-subdividing among NORD diseases.

raction of clinical trials devoted to ODA-qualifying subdivisions
ver this period against the prevalence of the unsubdivided dis-
ases. I restrict the sample to diseases with prevalence higher than
00,000, and omit status-changer diseases. Fig. 2 clearly depicts an
nverted-U shape relationship. Around the 200,000 threshold, there
s a clear and dramatic positive relationship between the fraction of
ew trials devoted to ODA-qualifying subdivisions of diseases and
he prevalence of the unsubdivided diseases. The regression also
xhibits a clear negative relationship for diseases with prevalence
hat exceeds 500,000.

I compare uncommon non-rare diseases to more prevalent
on-rare diseases in the NORD list to test the predictions of
he model more formally. Note that back-of-the-envelope calcu-
ation for the cut-off prevalence that defines uncommon non-rare
iseases, �Sub = 500,000, is consistent with the point where the non-
arametric regression in Fig. 1 turns sharply downward.

Section 4.1 through 4.2 formally quantify the extent to which
rms respond to the ODA by subdividing drug indications into ODA-
ualifying subdivisions of non-rare diseases. Whether this response
eflects new innovation is addressed in Section 5.

.1. Incentive to subdivide disease indications

Eq. (1) specifies a DD approach to compare ODA-qualifying sub-
ivisions of rare and non-rare diseases. Results of this estimation
re reported in Table 3. Column 1 compares uncommon-rare dis-
ases to more prevalent diseases in the NORD list. The results
ndicate a positive and significant increase in the flow of trials for
DA-qualifying subdivisions among all diseases associated with

he passage of the ODA. The flow of new trials for ODA-qualifying
ubdivisions of uncommon non-rare diseases is significantly larger
han that of the more-prevalent control diseases. The coefficient
n the interaction term implies that the ODA led to a 460-percent
=[exp(1.727) − 1] × 100) increase in the flow of new clinical trials
or ODA-qualifying subdivisions of uncommon non-rare diseases
elative to new trials for comparison diseases.

As in Finkelstein (2004) and Yin (2008), I also estimate Eq. (1)
ncluding period-interaction terms. I include three PostODA(t, t)i
ariables that indicate whether a clinical trial for disease i began
n the first 3, 3–6, or 7 or more years after the ODA was passed.
he variable NonRare(200k, 500k) × PostODA(t, t′) is the interaction
erm between the prevalence category indicator and a PostODA

ndicator. Results of this analysis are reported in column 2. Firms
ppear to respond immediately to incentives to subdivide uncom-
on non-rare diseases; they also appear to respond to the ODA
ith greater intensity towards the end of the study period. Subdi-

iding of uncommon non-rare diseases was somewhat diminished

http://www3.niaid.nih.gov/
http://www.niams.nih.gov/
http://www.cdc.gov/
http://www.niddk.nih.gov/


W. Yin / Journal of Health Economics 28 (2009) 950–962 957

Table 3
Subdividing uncommon non-rare diseases.

Dependent variable: No. of new clinical trials for ODA-qualifying subdivisions of NORD diseases

Treatment disease “Uncommon” non-rare diseases (200k–500k)

Control disease Rare diseases (100k–200k) Non-rare diseases (>500k) Diseases (100k–200k) and diseases (>500k)

(1) (2) (3) (4) (5) (6)

PostODA 2.386** (1.261) 2.758*** (1.019) 2.939*** (1.183)
NonRare(200k, 500k) × PostODA 1.727** (0.877) 0.684 (0.798) 1.349* (0.781)
PostODA 13 1.545 (1.341) 0.693 (0.681) 1.812 (1.238)
PostODA 46 2.697** (1.304) 1.609 (0.662) 2.852*** (1.207)
PostODA 7plus 1.922 (1.229) 2.886*** (0.613) 2.833*** (1.183)
NonRare(200k, 500k) × PostODA 13 1.686* (0.972) 1.504** (0.683) 1.638* (0.852)
NonRare(200k, 500k) × PostODA 46 0.804 (0.901) 0.930 (0.711) 0.834 (0.809)
NonRare(200k, 500k) × PostODA 7plus 2.255*** (0.865) 0.532 (0.847) 1.489* (0.794)
Year dummies Y Y Y Y Y Y
No. Rare Diseases(100k, 200k) 6 6 – – 6 6
No. of NonRare(200, 500k) diseases 22 22 22 22 22 22
No. of NonRare(>500k) diseases – – 14 14 14 14
Number of diseases 28 28 36 36 42 42
Observations 392 392 504 504 588 588

Reports the parameter estimates of the Poisson conditional fixed-effects regression. The dependent variable is the number of new clinical trials for an ODA-qualifying
subdivision of a disease in the NORD list in a given year. The fixed effects model drops all disease for which there are no counts in the time series. The variable NonRare(200k,
500k) is an indicator that takes 1 for diseases that have prevalence between 200,00 and 500,00. The variable PostODA is an indicator variable for observations in years after
the ODA passage. The PostODA (t1, t2) variables are indicators for observations between years (t1, t2) after the ODA passage. Column headers note which diseases are included
in the sample specification. Regressions are estimated using single-year dummy variables. Quasi-ML estimation of standard errors were calculated following Wooldridge
(
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The variable Total Rx represents the number of prescriptions
written for a given orphan drug, i in a given year, for the treatment
1997, 1999) and are reported in parentheses.
* Significant at 10%.

** Significant at 5%.
*** Significant at 1%.

n the middle period. This is a result of greater subdividing of control
iseases over this middle sub-period.

I repeat these analyses using diseases with prevalence higher
han �Sub = 500,000 as a control. The results of this analysis are
eported in columns 3 and 4. Here, again, the results show that firms
esponded immediately to the incentives to conduct new clinical
rials for ODA-qualifying subdivisions of uncommon non-rare dis-
ases. Declines in the intensity of indication-subdividing over the
tudy period are driven largely by increases in the flow of clinical
rials for ODA-qualifying subdivisions of the control diseases. Qual-
tatively similar results are reported in columns 5 and 6 where the
ample includes both sets of control diseases.

Coefficient estimates on the uninteracted PostODA(t, t) terms
uggest that the ODA is associated with substantial indication-
ubdividing among control diseases. Thus, there may be reasons for
ndication-subdividing in response to the ODA that are not modeled
n Section 2. For example, if heterogeneous patients incur search
osts (financial and clinical costs of inappropriate drug use) of find-
ng the best drug on the market for a given disease, then firms have
n incentive to make patients aware of the specific patient sub-
opulation for whom their drug is most beneficial. This may give
ise to incentives to subdivide any disease, even those with preva-
ence below 200,000 or above �Sub. Another possibility is that the
DA broadly reduces the risk of conducting expensive clinical drug

rials. A subsidized clinical trial for an ODA-qualifying subdivision
f a drug’s potential market can be used to inform the firm of its
rug’s safety and efficacy for a larger indication, thereby reducing
he risk associated with larger and more expensive clinical trials.
hese mechanisms would lead to observed subdividing among the
ore prevalent control diseases in response to the ODA. However,

hey do not predict that firms have a greater incentive to subdivide
ncommon non-rare diseases, as is observed empirically.
.2. Time series variation in the incentives to subdivide

Status-changer diseases are not included in the estimation of Eq.
1). I measure the impact of losing rare-disease status on indication-

t
S
w
w

ubdividing among status-changer diseases by estimating Eq. (2).
esults are reported in Table 4. The columns report the coeffi-
ient estimate on Changed from Rare under several specifications
or comparison diseases. The coefficient estimates across the three
olumns are fairly stable, suggesting that the loss of rare-disease
tatus led to a 350-percent (=[exp(1.5) − 1] × 100) increase in the
ow of clinical trials for ODA-qualifying subdivisions of the status-
hanger diseases.

.3. Secondary predictions

The model presented in Section 3 assumes that firms seek
ff-label sales for drugs whose on-label market they strategically
educe in order to qualify for the ODA-subsidy.13 I test whether this
ssumption is consistent with the data on drug prescriptions and
ff-label sales. I compare off-label sales of drugs approved for an
DA-qualifying subdivision of a non-rare disease to those of other
pproved orphan drugs, conditional on the prevalence of the dis-
ase indication for which it was approved. Greater off-label sales
or drugs indicated for a subdivision of a non-rare disease would be
onsistent with these drugs having larger potential markets than
he indications sought by firms. I estimate the following equation
n the sample of approved orphan drugs, i:

otal Rxi = exp(˛ + ˇ1SubNonRarei + ˇ2SubRarei

+ ˇ3 log(OnLabelPopi) + ˇ4ApprovalYri) + εi. (4)
13 Consistent with this prediction, there have been several instances of abuse of
he ODA brought to the public’s attention (Rin-Laures and Janofsky, 1991; Senate
ub-committee Hearings S.2060 1992; Maeder, 2003). In these cases, orphan drugs
ere first approved to treat a rare disease and then were found to benefit patients
ith much more prevalent diseases.
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Table 4
Indication-subdividing of status-changer diseases.

Dependent variable: number of new clinical trials for ODA-qualifying subdivisions of NORD diseases

Treatment disease Status-changer diseases

Control disease Rare diseases (100k–200k) Non-rare diseases (200k–500k) Diseases (100k–200k) and diseases (200k–500k)

(1) (2) (3)

Changed from rare 1.306*** (0.204) 1.572*** (0.228) 1.524*** (0.213)
Single-year dummies Y Y Y
No. of diseases 9 25 31
Observations 99 275 341

Reports the parameter estimates of the Poisson conditional fixed-effects regression. The dependent variable is the number of new clinical trials for an ODA-qualifying
subdivision of a disease in the NORD list in a given year. The fixed effects model drops all disease for which there are no counts in the time series. Column headers note which
diseases are included in the sample specification. The variable Changed from Rare is an indicator that takes 1 when a disease is not rare, and 0 when a disease is rare. All
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egressions include single-year dummy variables. Quasi-ML estimation of standard e
Significant at 10%.
*significant at 5%.
*** Significant at 1%.

f any disease. The independent variables of interest are SubNon-
are and SubRare, indicators for whether the approved orphan drug

s indicated to treat an ODA-qualifying subdivision of a non-rare
r rare disease, respectively, in the NORD list. (The omitted cate-
ory comprises orphan drugs approved for an unsubdivided rare
isease.) ApprovalYr denotes the year the drug was approved for
arketing, and captures the time elapsed since the knowledge of

ts uses first diffused through the market. Data on the number of
rescriptions in the US for each approved orphan drug are obtained

rom the 2002 National Ambulatory Medical Care Survey. It pro-
ides data on the number of times drugs are prescribed in the US,
nd the International Classification of Diseases (ICD) code associ-
ted with the prescription. Data for OnLabelPop, the prevalence of
he approved indication for each orphan drug, was obtained from
he FDA. A positive coefficient on SubNonRare would be consistent
ith incentives underlying the model. Similarly, I expect the coef-
cient on SubRare to be insignificant.14 I estimate Eq. (4) on the
ample of 245 orphan drugs, where the outcome variable is the
umber of prescriptions for the brand name drug. I find:

otal Rxi = exp(53.9
(84.5)

+ 0.991
(0.53)

· SubNonRarei − 0.640·
(0.65)

SubRarei

+ 0.055
(0.12)

· log(OnLabelPopi) − 0.022
(0.04)

· ApprovalYri). (5)

The estimate on SubNonRare suggests that on average orphan
rugs approved for a subdivision of a non-rare disease were
rescribed 170-percent more often than drugs approved for a tradi-
ional rare disease, conditional on the disease prevalence for which
hey were approved. The coefficient on SubRare is not significantly
ifferent from zero, consistent with the notion that such drugs were

ot developed as a strategic response to restrict the on-label popu-

ation (and to sell extensively off-label) in order to acquire the ODA
ncentives.15

14 Ideally, I would use off-label prescriptions as the outcome variable. However, the
AMCS is sufficiently specific in coding disease diagnosis, making determination of
ff-label prescriptions unclear. Instead, I use Total prescriptions for a given drug,
onditional on the market size of the approved indication. In theory, this should
ield identical point estimates, assuming diseases in the sample are similar in their
apping from prevalence to market size.

15 I also construct two binary outcome variables for drug prescriptions—whether a
rug appears in the 2002 NAMCS survey, and whether a drug appears in any previous
AMCS survey. Aggregating all NAMCS surveys increases the likelihood that a given
rug is mentioned. I estimate Eq. (4) in a probit framework, and find that orphan
rugs indicated to treat a subdivision of a non-rare disease are 36-percent more

ikely to have been mentioned at least once in 2002, and 26-percent more likely to
ave been mentioned in any prior survey. The coefficient on SubRare is insignificant
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ere calculated following Wooldridge (1997, 1999) and are reported in parentheses.

. Quantifying the impact of the ODA on subdividing net of
nefficiencies

The response to the ODA reported in Section 4 does not neces-
arily represent new innovation. As modeled in Section 2, some of
he observed response may represent R&D that would have been
onducted in the absence of the ODA. Neither the FDA nor the
ax authorities are able to identify which trials are conducted on
he margin in response to the ODA. Consequently, the ODA sub-
idizes every drug trial indicated for ODA-qualifying subdivisions,
ven if the R&D would have been conducted without the policy.
n an attempt to quantify this inefficiency, I estimate the extent to

hich new clinical trials for ODA-qualifying subdivisions of uncom-
on non-rare diseases are offset by simultaneous declines in new

linical drug trials for the corresponding unsubdivided tradition-
lly defined disease indications. Data on new clinical trials for
rugs indicated for traditionally defined disease are summarized

n Table 1 Panel B.
I re-estimate Eq. (1), however now I use counts of new clini-

al trials for unsubdivided NORD diseases as the outcome. I test
hether the ODA is also associated with declines in the flow of

ew trials for unsubdivided indications of uncommon non-rare dis-
ases. I use NORD diseases with prevalence exceeding 500,000 as a
ontrol (drug development for these diseases – subdivided or oth-
rwise – should be unaffected by the ODA). I interpret declines in
&D for unsubdivided uncommon non-rare diseases after the ODA
assage, relative to larger non-rare NORD diseases, as evidence of
edefining indications for drugs that would have been developed
n the absence of the ODA.

Status-changer diseases offer a second setting in which ineffi-
iencies can occur. I re-estimate Eq. (2) using new clinical trials for
nsubdivided status-changer diseases as the dependent variable. I

ook for evidence of declines in the flow of new trials for the unsub-
ivided disease indications as evidence of indication-subdividing

or these diseases.
Results of this analysis are reported in Table 5. Columns 1

nd 2 report the results of estimating Eq. (1), using new trials
or ODA-qualifying subdivisions of sample diseases and for the

nsubdivided diseases, respectively. (Column 1 reports results from
able 3 column 2.) I find that the ODA was not associated with
eclines in new clinical trials for unsubdivided uncommon non-
are diseases. In fact, the flow of new trials for these diseases moves

n both regressions. In these regressions, the coefficient on the year of approval is
egative and precisely estimated, suggesting that market penetration and diffusion
f knowledge about the use of drugs is not immediate.
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Table 5
Substitution towards ODA-qualifying subdivisions of NORD diseases.

Treatment disease Non-rare diseases (200k–500k) Status-changer diseases

Control disease Non-rare diseases (>500k) Rare diseases (100k–200k)

Dependant variable: no. of new clinical trials ODA-qualifying subdivisions Unsubdivided indications ODA-qualifying
subdivisions

Unsubdivided
indications

(1) (2) (3) (4)

PostODA 13 1.545 (1.341) 0.454 (0.554)
PostODA 46 2.697** (1.304) 1.365** (0.561)
PostODA 7plus 1.922* (1.123) 1.515*** (0.563)
NonRare(200k, 500k) × PostODA 13 1.686* (0.972) 0.452 (0.454)
NonRare(200k, 500k) × PostODA 46 0.804 (0.901) 0.393 (0.468)
NonRare(200k, 500k) × PostODA 7plus 2.255*** (0.865) 0.379 (0.441)
Changed from rare 1.306*** (0.204) −0.287** (0.105)
Single year dummies Y Y Y Y
No. of diseases 36 54 9 15
Observations 504 756 99 165

Reports the parameter estimates of the Poisson conditional fixed-effects regression. This table compares the extent to which new clinical trials for ODA-qualifying subdivisions
of uncommon non-rare diseases offset clinical trials for drugs indicated for the unsubdivided disease indication that would have been developed in absence of the ODA. The
dependent variable in column (1) is the number of new clinical trials for an ODA-qualifying subdivision of a disease in the NORD. The dependent variable in column (2) is
the number of new clinical trials for an unsubdivided NORD disease in a year from 1981 to 1994. A similar comparison can be made for the flow of new clinical trials for
status-changer diseases in columns (3) and (4) for the 1984–1994 post-ODA period. Note that columns (1) and (3) are preferred specifications taken from Tables 3 and 4.
The fixed effects model drops all disease for which there are no counts in the time series. The variable NonRare(200k, 500k) is an indicator that takes 1 for diseases that have
prevalence between 200,000 and 500,000. The variable PostODA is an indicator variable for observations in years after the ODA passage. The PostODA (t1, t2) variables are
indicators for observations between years (t1, t2) after the ODA passage. The variable Changed from Rare is an indicator that takes 1 when a disease is not rare, and 0 when
a disease is rare. All regressions included single-year dummy variables. Quasi-ML estimation of standard errors were calculated following Wooldridge (1997, 1999) and are
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* Significant at 10%.

** Significant at 5%.
*** Significant at 1%.

n lock-step with the more prevalent NORD diseases. The analysis
f status-changer diseases provides evidence of inefficiencies. The
69-percent increase in the flow of new trials for ODA-qualifying
ubdivisions of status-changer diseases (column 3) is offset by
simultaneous 25-percent decline in the flow of new trials for

nsubdivided status-changer diseases when these diseases lose
are-disease status (column 4).

These percentage impacts are estimated off of different base
ow rates. To quantify the inefficiencies in levels, I calculate the
redicted increase in the aggregate number of new clinical trials
ttributed to the ODA. This accounting exercise suggests that the
DA led to 29 new clinical trials for subdivided indications of status-
hanger diseases over this period (based on Table 5 column 3),
nd to a simultaneous decline of 18 new clinical trials for unsubdi-
ided status-changer disease indications (based on Table 5 column
).

The total impact of the ODA on new clinical trials for ODA-
ualifying subdivisions of uncommon non-rare diseases can be
easured in the same way. Results reported in Table 3 column
for uncommon non-rare diseases (also reported in Table 5 col-

mn 1) suggest that the ODA led to approximately 156 new clinical
rials. Thus, in total the ODA led to 185 new clinical trials for ODA-
ualifying subdivisions of uncommon non-rare NORD diseases. This

mpact is similar in magnitude to the effect of the ODA on inno-
ation in traditional rare-disease drugs that was estimated in Yin
2008). The evidence of simultaneous declines in R&D of drugs for
nsubdivided NORD diseases suggests that at least 18 new trials
or roughly 10-percent – represent trials that would have been

onducted in the absence of the ODA but are nevertheless subsi-
ized.
. Conclusion

This paper studies how innovation policy impacts private phar-
aceutical innovation. Specifically, I examine the ODA, which

reated supply and demand-side incentives for the development

i
t
n
5
q

f rare-disease drugs. While prior studies of the ODA have focused
nnovation in traditionally defined rare-disease drug markets, this
tudy examines innovation in non-rare disease drugs. In theory, the
olicy’s definition of a rare disease (any disease with US preva-

ence below 200,000) gives firms an incentive to carve out new
DA-qualifying diseases from patient populations with tradition-
lly defined diseases.

Evidence reported in this paper bears out these predictions. I
nd robust evidence that the ODA encourages firms to develop
rugs for ODA-qualifying subdivisions of non-rare diseases. Fur-
her, the impact on drugs that treat ODA-qualifying subdivisions
f non-rare diseases is equal in magnitude to the impact mea-
ured on traditional rare-disease drug development estimated in
arlier work (Yin, 2008). Commonly observed subdivisions in the
aw clinical trials data include subpopulations that are refractory to
xisting therapies, have a severe or progressed form of a disease, or
ave key co-morbidities or other characteristics that differentiate
atients according to their risk–benefit profile of drug utiliza-
ion. To the extent that the observed differentiation leads to more
ailored and personalized drug therapies (i.e. to a lower average
distance” between patients and the nearest drug on the disease cir-
le), subsidizing drug innovation for small disease populations may
ncrease average clinical benefits experienced by patients. Indeed,
he development of personalized drugs that treat narrowly defined
ubsets of patients within broadly defined disease populations is
idely thought to be a promising direction for future drug research

Haffner et al., 2002; Collins et al., 2003; Couzin, 2005).
This paper also shows that there are modest trade-offs associ-

ted with this innovation policy. Policies that subsidize unobserved
ffort may finance effort that is privately lucrative to agents, but not
n line with the objectives of the principal (Lazear, 1996). Subsidiz-

ng innovation that would have been conducted in the absence of
he policy is one example of how subsidizing R&D may yields little
ew innovation (Kremer, 2001; Hall, 2002). Calculations in Section
suggest that roughly 10-percent of new clinical trials for ODA-

ualifying subdivisions of non-rare diseases represent R&D that
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ould have been conducted in the absence of the policy, but are
evertheless subsidized. Relative to all the new clinical trials that
ere conducted in response to the ODA, this inefficiency accounts

or roughly 5-percent of the total response to the policy. While mod-
st in size, it suggests that reducing agency-related inefficiencies
hould be considered when designing innovation policy.

The nature of information asymmetries make it impossible for
egulators to identify which clinical trials would have been con-
ucted without ODA incentives. At best, regulators could limit

ndication-subdividing in general. A number of actions could be
riggered when an approved orphan drug is found to generate large
ff-label revenues. For example, revenues in excess of a prede-
ermined return on investment could be taxed. A more extreme

easure would combine an excess revenue tax with an ODA tax
redit repayment penalty. Whether a policy placed greater weight
n the repayment penalty or the excess off-label revenue tax would

deally depend on the extent to which taxes are expected to be
assed on to consumers.16 In principle, measures such as these
ould not affect R&D that would be conducted in absence of
DA incentives. The burden of inefficiency would be reduced as a
onsequence. However, these measures would also disincentivize
&D effort in disease subdividing which, in absence of the ODA,
ould not be conducted. Hence, the effectiveness of the proposed

easures would depend on the benefit of reducing inefficiencies

elative to the value of forgone innovation.
Similar (imperfect) attempts at limiting agency-related ineffi-

iencies in R&D policies are found in the context of national R&D
ax policies. To avoid subsidizing innovation that would occur in

16 In cases where an orphan drug is found to generate excessive revenues for its
ndicated on-label population, regulators could also limit or revoke the market exclu-
ivity provision. For example, the FDA could grant granting marketing approval for
he same drug for the same rare disease to a competitor. Such a provision was
ncluded in the 1990 amendment to the ODA. Under the amendment, a firm earning
xcessive revenues would have to share its marketing exclusivity with a competitor
n cases where the competitor applied for marketing approval for the same drug and
ndication, but was beaten out by the first firm. The President vetoed the amend-

ent on the grounds that it weakened a key incentive of the ODA (Rin-Laures and
anofsky, 1991).

(

A

mics 28 (2009) 950–962

he absence of R&D tax incentives, many OECD countries subsi-
ize incremental R&D only, where incremental is defined as current
&D expenditures less a firm’s baseline level of R&D spending (Hall
nd Van Reenen, 2000). In these contexts, regulators are unable to
etermine the true baseline R&D levels (the firms’ choice of R&D
xpenditures absent the tax incentive), and instead measure it as
ome moving average of R&D expenditures from previous years. In
ases where the observed baseline is higher (lower) than the true
nobserved baseline, the incremental tax discourages (encourages)
dditional innovation on the margin. As in the ODA context, provi-
ions that attempt to limit agency-related inefficiencies may also
eaken the main innovation incentives on the margin.

Finally, note that indication-subdividing may confer some ben-
fits to patients, even for drugs that would have been developed
ithout the ODA policy. Narrower labels help to identify subsets

f patients for whom the drug may be especially beneficial. This
nformation may reduce the cost of searching for the most appro-
riate drug. Search costs can be either financial or health-related

n nature. Suboptimal drug consumption may be associated with
onger duration of illness, worsening health, or simply a longer
uration of unnecessary side-effects. Existence of costly search
otivates innovation in diagnostic technologies, which may offer
second promising direction for growth in personalized medicine
Aspinall and Hamermesh, 2007).

ppendix A.

Tables A1 and A2.
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Table A1
Counting of clinical trials.

NDA pipeline data Coding

Line Drug Generic name Indication Trial phase New trial NORD# Orphan subdivision

Johnson & Johnson (1987)
1

Motilium

Epidermal growth factor,
biosynthetic

Severe burn IND

2 Thymoxamine HCl Phenylephrine-induced mydriasis
3 Domperidone Parkinson’s Clinicals
4 Gonadorelin acetate Ovulation induction NDA Pend.
5 Histrelin Precocious puberty Clinicals
6 Tepoxalin Psoriasis Clinicals
7 Retin-A Tretinoin Psoriasis Clinicals
8 Immunox Thymopentin (TP-5) AIDS Clinicals
9 Vaccine Hepatitis B Clinicals

10 Sibelium Flunarizine Epilepsy II
11 Sibelium Flunarizine Alternating hemiplegia
12 Sporanox Itraconzanole Anti-fungal Clinicals

Johnson & Johnson (1988)
13 Epidermal growth factor,

biosynthetic
Severe burn Preclinicals

14 Thymoxamine HCl Phenylephrine-induced mydriasis
15 Histrelin Precocious puberty Clinicals
16 Gonadorelin acetate Ovulation induction NDA Pend.
17 Eprex Erythropoietin (EPO) AIDS Clinicals 1 5 0
18 Eprex Erythropoietin (EPO) Anemia Clinicals 1 1178 0
19 Eprex Erythropoietin (EPO) Anemia of prematurity (orphan) Clinicals 1 1178 1
20 Eprex Erythropoietin (EPO) Severe anemia assoc. w/AZT in AIDS

(orphan)
Clinicals 1 1178 1

21 Tepoxalin Psoriasis Clinicals
22 Tepoxalin Atopic dermatitis Clinicals 1 815 0
23 Immunox Thymopentin (TP-5) AIDS Clinicals
24 Vaccine Hepatitis B Clinicals
25 Motilium Domperidone Parkinson’s III
26 Sibelium Flunarizine Epilepsy II
27 Sibelium Flunarizine Alternating hemiplegia Clinicals 1 623 0
28 Sporanox Itraconzanole Cryptoccocal meningitis II 1 807 0

The table shows a portion of a typical data table from the NDA Pipeline, sampled from years 1987 and 1988 for Johnson & Johnson. Since the analysis uses new clinical trials as
the main outcome variable, 1987 and 1988 data are used to generate data on new clinical trials for 1988. The methodology used to code the raw data is described below. Step
1: Identify new human clinical drug trials in 1988 that do not appear in 1987. (Identified as “1” in the column New Trial.) Several decisions were made for consistency. (A) The
year associated with the start of a new trial for a disease in the NORD list was determined to be the first year the trial was explicitly indicated for that disease. For example,
trials for Sporonox (line 12) had begun by 1987, but only in 1988 did the NDA Pipeline record that it was in trials to treat cryptoccocal meningitis (CM) (line 28). Therefore,
the trial for CM is coded to have begun in 1988. Note that by 1988, the trial is in phase II. 1988 was chosen (rather than predating the trial for CM to the year Sporanox first
appears in the journal) because it is very possible that J&J conducted phase I trials without having decided that Sporanox was best suited to treat MC, specifically, among
other types of bacterial infections until phase II trials. (B) Likewise, had Eprex appeared in 1987 to treat anemia and AIDS, then among Eprex trials in 1988, only the trials for
anemia of prematurity and for severe anemia for AIDS patients taking AZT (lines 19, 20) would be considered new trials. The trials for AIDS and anemia would be considered
unique trials, as they are listed as separate trials in subsequent volumes of the NDA Pipeline. (C) Sibelium is listed in 1987 for alternating hemiplegia (line 11). The Trial Phase
cell is blank, suggesting that a firm has self-reported plans to begin trials for an indication. In 1988 (line 27) Sibelium is first recorded to be in a specific stage of trials for
alternating hemiplegia; so I record the trial start year to be 1988. Step 2: Record the NORD disease identifying number, which I previously assigned to every diseases in the
NORD list. Identifying the NORD identifying number allows for mapping back to other disease characteristics when later merged with the main data tables. Step 3: Determine
if the drug indication is an ODA-qualifying subdivision. Often, the NDA Pipeline will report whether the drug indication is an orphan indication (as it does in lines19 and 20).
I
f

T
T

D

D

S

D

dentifying a trial as an orphan is often based on firms having already sought orphan desi
or the same indication. Subdivisions of an already rare disease were ipso facto recorded a

able A2
ypology of diseases indications.

rug indication Example(s)

isease X Infant respiratory distress syndrome

ymptom of disease Y Muscle contracture in cerebral palsy

isease X associated with disease Y Pneumocystis Carinii infection
associated with AIDS
gnation from the OOPD. Other times, it is based on orphan status of a previous trial
s an orphan indication.

Coding of example(s) Coding: subdivided or
unsubdivided indication

Indication: infant respiratory distress
syndrome

Unsubdivided

Subpopulation: none

Indication: cerebral palsy Unsubdivided
Subpopulation: none

Indication: pneumocystis Carinii
infection

Subdivided

Subpopulation: for patients with AIDS
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Table A2 (Continued)

Drug indication Example(s) Coding of example(s) Coding: subdivided or
unsubdivided indication

Disease X, for patients of type Y Crohn’s disease refractory to
conventional therapy

Indication: Crohn’s disease Subdivided

Subpopulation: for patients refractory
to conventional therapy

Neutropenia where neotrophil counts
are below 500 mm−3

Indication: neutropenia Subdivided

Subpopulation: for patients with
neotrophil counts below 500 mm−3

Advanced case of disease X Stage III–IV malignant melanoma Indication: malignant melanoma Subdivided
Subpopulation: patients with stage III
or IV melanoma

Disease X, specific subtype Xi Gaucher’s disease, type I Indication: Gaucher’s disease Subdivided
Subpopulation: patients with type I

Relapsing and remitting multiple
sclerosis

Indication: multiple sclerosis Subdivided

Subpopulation: patients with relapsing
and remitting type
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ists the types of drug indications found in the NDA Pipeline and how determinati
isease. Within sample, this typology provides an exhaustive list of every type of NO
ubdivision is provided, as well as how such a clinical trial was coded.

eferences

rrow, K., 1962. Economic Welfare and the Allocation of Resources for Inven-
tion. Economics of Technological Change. N. Rosenberg, Harmondsworth,
Penguin.

spinall, M.G., Hamermesh, R.G., 2007. Realizing the promise of personalized
medicine. Harvard Business Review 85 (10).

ameron, A.C., Trivedi, P.K., 1998. Regression Analysis of Count Data. Cambridge
University Press.

ollins, F., Green, E., et al., 2003. A vision for the future of genomics research. Nature
422, 835–847.

ouzin, J., 2005. To what extent are genetic variation and personal health linked?
Science 309 (5731), 81.

iMasi, J., Hansen, R., et al., 2003. The price of innovation: new estimates of drug
development costs. Journal of Health Economics 22, 151–185.

inkelstein, A., 2004. Static and dynamic effect of health policy: evidence
from the vaccine industry. Quarterly Journal of Economics 119 (2),
527–564.

arrison, L.P., Austin, M.J., 2006. Linking pharmacogenetics-based diagnostics and
drugs for personalized medicine. Health Affairs 25 (5), 1281–1290.

affner, M.E., Whitley, J., et al., 2002. Two decades of orphan product development.
Nature Reviews Drug Discovery 1, 821–825.
all, B., Van Reenen, J., 2000. How effective are fiscal incentives for R&D? A review
of the evidence. Research Policy 29 (4–5), 449–470.

all, B., 2002. The financing of research and development. Oxford Review of Eco-
nomic Policy 18 (1), 35–51.

ausman, J., Hall, B., et al., 1984. Econometric models for count data with application
to patents—R&D relationship. Econometrica 52, 909–938.

W

Y

ere made regarding whether an indication was coded as a subdivision of a NORD
sease subdivision encountered in the data collection. Examples of each typological

ouse of Representatives Subcommittee Report, 1982. Preliminary Report of the
Survey on the Drugs for Rare Diseases. Subcommittee on the Health and the
Environment. Government Printing Office, DC.

remer, M., 2001. Creating markets for new vaccines. Part I: rationale. In: Jaffe, A.B.,
Lerner, J., Stern, S. (Eds.), Innovation Policy and the Economy, vol. 1. MIT Press.

azear, E., 1996. Incentives in basic research. NBER working paper no. 5444.
ichtenberg, F., Virabhak, S., 2002. Pharmaceutical-embodied technical progress,

longevity, and quality of life: drugs as “Equipment for your Health”. NBER work-
ing paper no. 9351.

ichtenberg, F., Waldfogel, J., 2003. Does misery love company? Evidence from phar-
maceutical markets before and after the Orphan Drug Act. NBER working paper
no. 9750.

aeder, T., 2003. The orphan drug backlash. Scientific American 288 (5), 87–90.
in-Laures, L.-H., Janofsky, D., 1991. Recent developments concerning the orphan

drug act. Harvard Journal of Law & Technology 4, 269–297 (Spring).
ohde, D.D., 2000. The orphan drug act: an engine of innovation? At what cost? Food

and Drug Law Journal 55 (1), 125–143.
alop, S., 1979. Monopolistic competition with outside goods. Bell Journal of Eco-

nomics 10 (1), 141–156.
enate Subcommittee Hearings S.2060, 1992. Subcommittee on Antitrust, Monop-

olies and Business Rights. Government Printing Office, US.
ooldridge, J., 1997. Quasi-likelihood methods for count data. In: Pesaran, M.H.,
Schmidt, P. (Eds.), Handbook of Applied Econometrics, vol. 2. Blackwell, Oxford,
pp. 352–406.

ooldridge, J., 1999. Distribution-free estimation of some non-linear panel data
models. Journal of Econometrics 90, 77–97.

in, W., 2008. Market incentives and pharmaceutical innovation. Journal of Health
Economics 27 (4), 1060–1077.


	R&D policy, agency costs and innovation in personalized medicine
	Introduction
	Orphan drug act
	ODA incentives
	Predicted impact of the ODA drug development

	Empirical strategy
	Control diseases
	Data
	Estimation framework
	Prediction 1: incentive to subdivide around 200,000
	Prediction 2: diminishing incentive to subdivide more prevalent diseases


	Empirical results
	Incentive to subdivide disease indications
	Time series variation in the incentives to subdivide
	Secondary predictions

	Quantifying the impact of the ODA on subdividing net of inefficiencies
	Conclusion
	Appendix A
	References


