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1. Introduction

A widely held view is that market failures lead to inefficient
allocation of R&D investments. If so, there is scope for the devel-
opment of welfare-improving policies to alter firms’ R&D activities.
When it is impractical to implement optimal corrective measures,
incentive mechanisms are chosen from the set of available “second-
best” policies. These policies are designed to stimulate private R&D
investments; at the same time, they are thought to be associated
with inefficiencies (Arrow, 1962; Lazear, 1996; Hall, 2002). Despite
its importance for innovation policy, little empirical work has been
devoted to studying how specific policy mechanisms affect private
innovation, or to identifying empirically the source and extent of
inefficiencies related to the design of incentives.

In this paper, I study these issues in the context of pharma-
ceutical innovation. The pharmaceutical industry has been one
of the most innovative industries over the past half century, and
one whose innovations embody substantial technological progress
(Lichtenberg and Virabhak, 2002). Specifically, I study the private
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R&D investment response to incentives created by the Orphan Drug
Act (ODA). Passed in 1983, the ODA established supply and revenue-
side incentives to stimulate drug development for rare diseases,
defined as diseases with prevalence less than 200,000 Americans.
Passage of the ODA provides an ideal setting in which to test
whether tools at the disposal of policy-makers are able to stimulate
innovation in areas where private R&D is deemed inadequate.
Previous studies of the ODA estimate a significant private
R&D response to incentives created by the ODA (Lichtenberg and
Waldfogel, 2003; Yin, 2008). Yin (2008) finds a significant increase
in the flow of new clinical trials for drugs treating rare diseases
immediately after the ODA was passed relative to the flow of new
drug trials for a set of control diseases—uncommon disease but with
prevalence slightly above the ODA threshold. The set of diseases
comprises nearly twelve hundred low-prevalence diseases known
to exist at the time the ODA was passed. As such, these diseases rep-
resent a set of the most widely recognized, long-established, rare
diseases that lawmakers hoped would be affected by the ODA.
Notably, these studies focus only on traditionally defined rare
diseases, and do not study the impact of the ODA on innovation
in more prevalent, non-rare disease drug markets. While the ODA
was created to spur the development of drugs for traditionally
defined rare diseases, its design may also have encouraged firms
to define and then to develop drugs tailored to treat distinct sub-
sets of patients within traditionally defined disease populations.
Under the ODA, subdivisions of traditionally defined diseases qual-
ify as rare in and of themselves so long as the patients carved out by
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firms for clinical drug trials number fewer than the ODA prevalence
threshold. This holds even if the prevalence of the unsubdivided tra-
ditionally defined disease exceeds 200,000. (Henceforth, I refer to
these disease subdivisions as “ODA-qualifying subdivisions.”) Con-
sistent with these ODA incentives, the post-ODA period is witness
to a profusion of clinical trials for drugs indicated for newly defined
diseases that distinguish patients according to their heterogeneous
drug response, co-morbidities, or disease severity, each of which
alter the risk-benefit profile of drug utilization.! The potential
impact of the ODA on greater “personalization” in pharmaceutical
treatment has significant clinical implications. Indeed, the use of
genetic and genetic-environmental markers to distinguish patients
who share the same traditionally defined disease phenotype by
their drug response is widely thought to be a potential basis of
future drug innovation (Collins et al., 2003; Couzin, 2005; Aspinall
and Hamermesh, 2007). Yet to date, little attention has been paid
to the economic principles underpinning innovation in these mar-
kets. The ODA offers a unique opportunity to study how innovation
policy can affect pharmaceutical R&D, particularly in the emergent
and clinically important market for more personalized drugs.?

In this study, I use the passage of the ODA to test whether
firms respond to innovation incentives. In particular, I investi-
gate whether the ODA spurred innovation in drugs that treat
ODA-qualifying subdivisions of non-rare diseases—a behavior I call
“indication-subdividing.” To estimate the impact of the ODA on
indication-subdividing, I construct a unique dataset of new clinical
drug trials conducted in the US. I then estimate the extent to which
firms conduct new drug trials for ODA-qualifying subdivisions of a
set of long-established, traditionally defined, diseases.

One challenge in conducting this analysis is to designate control
diseases to capture secular trends in pharmaceutical R&D unre-
lated to the passage of the ODA. Simply estimating the change in
the extent of indication-subdividing around the passage of the ODA
captures both the response of interest as well as changes in pharma-
ceutical market coinciding with the ODA. At first glance, it would
seem that the ODA created incentives for firms to subdivide any
traditionally defined disease, leaving no obvious set of diseases to
function as a control. However, I show that firms have an incentive
to subdivide only those diseases with prevalence slightly higher
than 200,000, i.e. “uncommon non-rare diseases.” Diseases that
firms have no incentive to subdivide in response to the ODA are
used as controls. I interpret increases in the flow of R&D for ODA-
qualifying subdivisions of uncommon non-rare diseases, netting
out observed subdividing for control diseases, as an estimate for
the predicted behavior.

The intuition guiding this prediction is straightforward. Conven-
tionally, a firm conducts clinical trials to test a drug on patients it
believes the drug will benefit. Once the drug is approved by the
FDA, the firm can market the drug for the purpose indicated on its
drug label—i.e. treatment of the disease population on which the
drug was tested and for which it was approved. The ODA subsidizes

1 Patients with the same disease phenotype may differ in their etiology or clinical
response to therapy. These differences give firms an incentive to develop differ-
entiated drugs to capture a subset of patients for which the drug is clinically most
appropriate. Examples of subdivided diseases include late-stage type-IV Parkinson’s
disease and relapsing and remitting multiple sclerosis (MS). Note that while Parkin-
son’'s disease and MS have estimated prevalence that exceed 200,000, late-stage type
IV Parkinson’s disease and relapsing and remitting MS have estimated prevalence
below 200,000, and are considered rare diseases for purposes of the ODA.

2 Emphasis on personalized drugs has increased with a better understanding
of how differences in genetic or genetic-environmental interactions lead to het-
erogeneous drug responses. Partitioning diseases according to “genotype drug
response phenotype” necessarily segments existing markets into small component
markets—a fact widely recognized as an economic impediment to innovation in
personalized medicine (Garrison and Austin, 2006).

the development costs for drugs that treat patient populations with
prevalence under 200,000, making it profitable for firms to carve
out an ODA-qualifying subdivision of non-rare disease populations
for clinical drug trials. However, indication-subdividing comes at
a cost to the firm. By law, firms are prohibited from marketing
their drugs for off-label uses (i.e. for patients with diseases not
explicitly indicated on the approved drug label). For drugs with
a large potential market, indication-subdividing leads to lost rev-
enues from diminished sales to patients comprising its off-label
market. If the off-label market is sufficiently large, then revenues
lost will outweigh the benefits of the ODA incentives, making
indication-subdividing an unprofitable strategy. Similarly, firms
have little incentive to subdivide drug markets which, unsubdi-
vided, already qualify as rare (traditional diseases with prevalence
below 200,000). Firms thus have the greatest incentive to subdi-
vide diseases with prevalence just above the ODA threshold—i.e.
uncommon non-rare diseases.

I use a difference-in-differences strategy to estimate the extent
of indication-subdividing (as measured by the flow of new clinical
drug trials for ODA-qualifying subdivisions of traditionally defined
disease) for a sample of uncommon non-rare diseases. Otherwise
similar diseases with slightly lower or higher prevalence are used
as controls. I estimate a substantial increase in the flow of new
clinical drug trials for ODA-qualifying subdivisions of uncommon
non-rare diseases relative to control diseases after the ODA was
passed. As an alternative identification strategy, I exploit time series
variation in rare-disease status for a small set of “status-changer”
diseases—diseases that are rare at the start of the study period
but grow in estimated prevalence to a level slightly above the
200,000 threshold at some point during the study period. Consis-
tent with the predicted impact of the ODA, I estimate a significant
and immediate increase in the flow of new clinical trials indicated
for ODA-qualifying subdivisions following the loss of rare-disease
status.

Note that subdividing may not necessarily represent new inno-
vation. New clinical trials for ODA-qualifying subdivisions may
represent R&D by firms which strategically redefine indications for
drugs that would have been developed in the absence of the ODA.
Thus, one challenge in interpreting the evidence is to quantify the
extent to which new clinical trials for newly defined subdivided dis-
ease indications represent R&D that would have been conducted
in the absence of the ODA. In drug markets where indication-
subdividing occurs, some firms can earn rents in exchange for
generating little new innovation.

Inefficient use of the ODA in this way is an empirical example of
a principal-agent problem that can arise in any policy setting that
subsidizes unobservable R&D. In these settings, firms can exploit
the inability of asymmetrically informed regulators (in this case, the
FDA or the tax authorities) to monitor pharmaceutical R&D effort;
doing so allows firms to claim the subsidy while directing actual
effort towards more lucrative projects, or towards projects that
would have been undertaken in absence of the subsidy (Kremer,
2001; Hall, 2002). These principal-agent problems may also arise
in more general settings. They may appear in both the basic research
and the private R&D settings, and have motivated an extensive the-
oretical literature on optimal subsidy and compensation contracts.
Yet it is not clear to what extent information asymmetries lead
to inefficiencies, particularly in the public R&D policy setting. The
R&D data collected for this study capture the timing of new clin-
ical trials, and identify the specific disease for which drugs under
development are being tested. The disaggregated nature of the data

3 See Lazear (1996) and Hall (2002) for reviews of this literature.
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provides traction to study how agency problems associated with
supply side R&D incentives leads to inefficiencies.

In an attempt quantify this type of inefficiency in the ODA,
I estimate to what extent new clinical trials for ODA-qualifying
subdivisions of uncommon non-rare diseases are offset by simul-
taneous declines in new clinical drug trials for the corresponding
unsubdivided traditionally defined disease indications. Calculations
I present at the end of this paper indicate that roughly 10-percent of
the estimated impact of the ODA on indication-subdividing would
have been conducted in the absence of the policy. These results sug-
gest that the ODA generates new R&D, particularly (and arguably
unintentionally) in the direction of more personalized drugs with
the potential to better-tailor drug therapies to patients. However,
the evidence on inefficiencies adds a cautionary note, suggesting
that concerns over agency costs associated with policies that sub-
sidize unobservable effort may be well-founded.

This paper proceeds as follows. Section 2 describes the Orphan
Drug Act and discusses the theoretical predictions of the ODA on
the behavior of firms. Section 3 outlines the empirical strategy to
test those predictions. Section 4 reports results of empirical anal-
yses. Section 5 quantifies the extent of indication-subdividing and
agency-related inefficiencies. Section 6 concludes.

2. Orphan drug act
2.1. ODA incentives

Between 1973 and 1983, only 10 drugs were marketed for rare-
disease indications; and only 36 drugs had ever been approved for a
rare disease by 1982 (HRSR, 1982). Pharmaceutical firms, however,
frequently possessed drugs with potential benefits to rare diseases.
Yet because these drugs were either not patentable or too costly
to take through clinical trials (particularly in comparison to their
low commercial demand) these drugs were “orphaned.” These facts
motivated passage of orphan drug legislation.

The 1983 Orphan Drug Act established two main incentives for
firms to develop rare-disease drugs: an income tax credit equal
to 50-percent of clinical trial expenses, and a marketing exclusivity
provision. The aim of the credit was to lower the cost of conducting
human clinical trials. Clinical trials are conducted to test for safety
and efficacy in order to gain marketing approval by the Food and
Drug Administration (FDA), and account for approximately two-
thirds of the total expenditures associated with drug development
(DiMasi et al., 2003).

The original ODA was amended in 1984 to define orphan drugs
to be those that treat diseases with prevalence below 200,000
Americans.” Sponsors of clinical trials submit applications to the
FDA’s Office of Orphan Product Development (OOPD) with epi-

4 The ODA market exclusivity provision lasts seven-years starting from the drug’s
FDA approval date, and prevents competitors from marketing the same drug for
the same approved rare disease. A competitor can still market the same drug for
any other disease. While the market exclusivity provision is substantially narrower
than a patent, it is beneficial for the development of drugs with little to no patent
protection (e.g. naturally occurring compounds, drugs whose benefit and structure
have been publicly disclosed, or drugs whose remaining patent life is short). A clin-
ical superiority provision was added in 1991 to prevent competitors from making
cosmetic changes to a drug and marketing it for the same rare disease. The 1991
amendment applies only when contested drugs share the same macromolecule; a
competing firm may still seek approval for a distinct drug to treat the same disease,
irrespective of the drug’s clinical superiority.

5 The 1983 ODA initially defined drugs that “lack commercial value” due to a
small patient market to be orphan drugs. The difficulty associated with establishing
unprofitability was blamed for the negligible R&D response by firms after the ODA
was passed in January 1983. The relevance of the ODA is widely thought to have
begun after the 1984 ODA amendment (Rohde, 2000).

demiological evidence that the drug treats a condition that has
prevalence less than 200,000. The OOPD designates the drug an
orphan if the evidence sufficiently and reliably supports that claim.
Firms acquire the tax credit after their drug receives orphan desig-
nation.

2.2. Predicted impact of the ODA drug development

Consider all patients afflicted with a given traditionally defined
disease. While these patients exhibit the same disease phenotype,
they may differ in their clinical response to a given drug. A circular
address model following Salop (1979) captures this heterogene-
ity, where patients with a given traditionally defined disease are
uniformly distributed on a circle. Drugs are positioned at a finite
number of locations on the circle. The clinical benefit of a given drug
to a given patient is represented by the distance between them. On
the production side, drug development has two cost components:
a fixed cost of R&D and a marginal cost of drug production. For a
given disease (and hence, a given drug market size 9), firms com-
pete in a free-entry environment to develop drugs for patients on
the disease circle.

Firms enter until revenues just offset the fixed costs of develop-
ment. The equilibrium number of evenly spaced drugs, N°, depends
on several parameters: the fixed cost of drug development, the
market size (which can also be interpreted as disease prevalence
or expected revenue per patient), and the intensity with which
distance to drugs affects utility. In equilibrium, the levels of R&D
increase in market size. For very low-prevalence diseases, there
is no entry because revenues are unable to offset the fixed cost
of development. The ODA incentives are modeled as a decrease in
the fixed cost of drug development.® This leads to higher levels of
innovation, N°PA| in drug markets that qualify as rare under the
ODA (6<200,000); and leads to a decrease in the no-entry mar-
ket size. These predictions are formally modeled and investigated
empirically by Yin (2008).

The present study examines the potential impact of the ODA on
innovation in non-rare disease drug markets (6 >200,000). Under
the ODA, subsets of these patients also qualify as having a “rare” dis-
ease so long as the distinct patient populations carved out by firms
for clinical trials number less than 200,000. Consequently, firms
have an incentive to first identify, and then to develop drugs tailored
to, ODA-qualifying subdivisions of non-rare disease populations.

In the baseline model described above, firms choose the quan-
tity of drugs to produce, Q, and price, P, to maximize profits. Further,
a free-entry and a covered-market condition (so that every patient
has unit consumption: Q=60/N°) must hold in equilibrium. Now, I
allow firms to partition a traditionally defined disease indication
into (1) an on-label drug market Q; (the ODA-qualifying patient
population for which it is tested and FDA approval is sought); and
(2) an off-label market, Q — Q; (i.e. all other patients with the tradi-
tionally defined disease but who do not share the same treatment
response profile of the patients carved out in Q). By redefining a
drug’s indication to an ODA-qualifying on-label population, the N°
firms obtain the ODA tax subsidy on clinical trials costs. These N°
firms earn positive profits, thereby encouraging entry of additional
drugs. Entry generates a new zero-profit “subdividing” equilibrium,

6 The effect of the ODA necessarily includes the impact of both the tax incentive
and the market exclusivity provision. For simplicity, | model only the tax incentive.
The market exclusivity provision could be modeled as some proportional increase
in effective market size or revenue, cf, for c>1. Note that the tax credit and the
market exclusivity provision affect innovation in the same direction, and both affect
innovation discontinuously at the 200,000 prevalence threshold. Thus, it is sufficient
to show that one of the incentives leads to the subdividing behavior at the focus of
this study.
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NSub| characterized by a larger number of drugs relative to the
no-ODA equilibrium, N°. In the new equilibrium, average distance
between patients and their nearest drug decreases. It is in this sense
that the ODA fosters greater personalization in drug markets. This
increase in subdividing can be tested empirically.

Note that in reality, each of the N°%Y drugs will be indicated for a
subdivided disease. However, only (NS“Y — N°) drugs represent new
innovation; N° drugs would have been introduced in the absence
of the ODA, and do not represent new innovation. Neither the FDA
nor the tax authority can observe which drugs would have been
developed in the absence of the ODA. Consequently, all N°*? firms
obtain the ODA incentives. The subsidy for N° drugs (which would
have been conducted in absence of the ODA, and which, in the sub-
dividing equilibrium, are indicated for ODA-qualifying subdivisions
of non-rare diseases) represents an agency-related inefficiency of
the policy.

An important prediction of the model is that the subdividing
equilibrium obtains in only certain markets. This fact guides the
specification of treatment and comparison diseases when estimat-
ing the extent of indication-subdividing in response to the ODA.
Intuitively, firms have little incentive to subdivide a traditional
disease that is already rare; they can obtain tax credits without
subdividing these patient populations. Likewise, firms have lit-
tle incentive to subdivide diseases with high prevalence. While
physicians are legally permitted to prescribe drugs off-label, firms
are prohibited from advertising off-label uses of drugs to either
patients or to physicians. Sales of drugs for off-label uses depend on
knowledge of these non-approved uses diffusing through the medi-
cal community, a process which may be slow. For drugs that benefit
very large patient populations, the loss in revenues associated
with restrictions on off-label marketing outweighs the immedi-
ate benefit of the ODA tax credit. Indeed, beyond some threshold
market size, 8541, it is unprofitable for firms to engage in indication-
subdividing.

More formally, note that the subdividing equilibrium will obtain
only if the N° firms in the prevailing equilibrium find it profitable
to deviate by engaging in indication-subdividing. For the present
purpose, it is not important to solve for the new equilibrium; it
suffices to solve for #5“b, the market size at which the firms no
longer earn positive profits by subdividing drug indications. This
allows me to evaluate revenues at the prevailing equilibrium price
without solving explicitly for the new zero-profit equilibrium under
subdividing.”

In the prevailing no-subdividing equilibrium, total market rev-
enue (of all symmetric, evenly spaced, firms) for a given disease’s
drug market of size 6 is simply RN°S4b =@p, where p is the equilib-
rium unit price of the drug in the no-subdividing, no-ODA regime.
The revenue can also be rewritten as RNoStb =k@;p, where k is
the constant multiple of the ODA-qualifying subdivision,f;, that
defines the total size of the unsubdivided disease’s drug market,
0. (Clearly, firms choose 6; to be 200,000, the ODA’s maximum
prevalence for a rare disease.)

The incentive for firms to subdivide drug indications stems from
the ODA incentives for low-prevalence diseases, which I model as a
tax subsidy on clinical trials costs. ODA-qualifying drugs have costs
FODA = oF, where 0 <« < 1 Firms will earn positive profits by deviat-
ing from the prevailing equilibrium by subdividing diseases with
prevalence slightly higher than 200,000. Indication-subdividing
will remain profitable for firms for all 6 until revenues in the subdi-

7 There is no closed-form solution to the number of competing drugs in subdi-
viding equilibrium, N**®; however it is straightforward to show that N°'® exceeds
the number of drugs in the prevailing no-ODA, no subdividing equilibrium, N°, in
markets where the subdividing equilibrium obtains.

viding equilibrium RSb = oRNoSub 8 (For larger drug markets, firms
gain the ODA subsidy, but lose more revenue in the conversion
of their drug’s potential market to off-label status.) Collectively,
the firms in a given market 9 earn RS0 =0;p+A-p(6 — 6;), where
A parameterizes the fraction of revenues from off-label sales that
the firm is able to earn despite marketing restrictions. Tighter
restrictions implies A is closer to zero. 50 can roughly be found
by solving for the k that satisfies (RS“P/RNoSuby~ o, This yields
k~(1-A)/(x—A). Consistent with the intuition of the descriptive
model, 854Y depends on the degree to which marketing restric-
tions limit revenue from off-label sales. Tighter restrictions imply
a smaller value for #5ub,

In summary, the model predicts a sharp discontinuity at 200,000
in prevalence in the incentive to subdivide disease markets; it also
predicts a sharp decline in the incentive to subdivide diseases that
have prevalence higher than 854%, Specification of 5 for the empir-
ical analysis is discussed in the Section 3.

3. Empirical strategy
3.1. Control diseases

The empirical analysis relies on a comparison between uncom-
mon non-rare diseases (for which I predict the ODA will have had an
impact on indication-subdividing) and control diseases (diseases
with prevalence slightly below 200,000 or those with prevalence
above 6510), A rough calibration of the model guides the choice of
65ub for the empirical analysis. The ODA subsidizes 50-percent of
human clinical trials costs. Studies suggest that human clinical tri-
als account for roughly two-thirds of all development costs (DiMasi
etal,, 2003). Therefore, the ODA lowers total development costs for
ODA-qualifying drugs by roughly one-third («=2/3). To determine
avalue for 654 I solve for the k that satisfies (Ryosup/Rsup) = 2/3. This
yieldsk=(1-1)/(2/3 — A). Complete loss of off-label revenue (A =0)
suggests that the cut-off prevalence, 85, is (3/2)-6; =300,000. Per-
haps a more reasonable calibration suggests that one-quarter to
one-half of potential revenue is lost due to off-label restrictions.
This implies the cut-off prevalence of roughly (5/2)-6¢ to 3-6¢ (or
roughly 500,000 to 600,000). Therefore, I define uncommon non-
rare diseases to be diseases with prevalence between 200,000 and
500,000.

3.2. Data

The sample of diseases I use in this study come from a list dis-
eases published by the National Organization for Rare Disorders
(NORD), a not-for-profit agency established in 1983 to serve as a
clearinghouse for information on uncommon and rare diseases.
They publish a database of 1177 low-prevalence diseases known
to exist at the time the ODA was passed. As such, these represent a
large set of widely recognized, long-established, rare diseases that
lawmakers hoped would be affected by the ODA. Given that the ODA
(somewhat arbitrarily) set 200,000 as the rare-disease prevalence
threshold, not all the diseases in the NORD list are rare. Indeed,
a review of the epidemiological and medical reference literature
allowed me to partition the NORD list into three groups: (1) 1023
rare diseases, defined as those with prevalence below the 200,000
threshold throughout the study period (nine of which have an

8 Technically, incumbents will cease to subdivide indications when
COS[‘S”b/COStNDSUb =y= RSub/RNuSub' where COSIS“b/COStNDS"b = (I:ODA + Qm)/(FODA/Ol + Qm),
and m is the marginal cost of drug production. When Qm is small relative to F (as is
roughly the case with most drugs), then y ~ «. Note that as Qm increases relative to
F, 654b increases.
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Fig. 1. New clinical drug trials for ODA-qualifying subdivisions of NORD diseases.

estimated prevalence between 100,000 and 200,000); (2) 148 non-
rare diseases (of which 50 have prevalence between 200,000 and
500,000, and 98 have prevalence exceeding 500,000); and (3) six
“status-changers” which move from being rare to non-rare during
the study period.

I collect data on the number of new clinical drug trials for a given
disease in a given year. New clinical trials (as opposed to new drugs
brought to market, or the stock of clinical trials) have the advan-
tage of reflecting investment decisions based on current market
conditions.? The principal sources of data on new clinical trials data
are two trade journals, The NDA Pipeline and Pharmaprojects, which
closely track clinical trials conducted by all major pharmaceutical
and biotechnology firms, as well as many small manufacturers and
non-profit research institutions. The journals report on the clinical
trials for all chemical entities known to the publisher, and include
information on the indications for which a drug is being tested,
the phase of its development, and whether the product has been
previously marketed. This information is used to identify when a
drug first appears in the pipeline for a specific disease indication.
The NDA Pipeline is also the principal source of data used in other
studies of pharmaceutical R&D (Finkelstein, 2004).

[ assemble my dataset by recording when new clinical drug trials
for diseases in the NORD list are first reported in these publications.
The final panel dataset lists the number of new clinical trials indi-
cated for each of the 1177 (unsubdivided) diseases in the NORD list,
by year. Appendix Table A1 describes in more detail the process by
which new clinical trials are counted. I construct a second panel
dataset listing new trials indicated explicitly for ODA-qualifying
subdivisions of NORD diseases. For example, a new clinical trial
for late-stage type-IV Parkinson’s disease appears as a new clini-
cal trial in the second panel data set under Parkinson’s disease. To
track ODA-qualifying subdivisions, I strictly follow the typology of
subdivisions outlined in Appendix Table A2. The final data are two
balanced panels of clinical trial counts for the NORD diseases from
1981 through 1994.

The total number of new clinical trials for ODA-qualifying sub-
divisions of NORD diseases, grouped by the disease prevalence
category over time is shown in Fig. 1. There is a noticeable increase
in the relative number of new trials for ODA-qualifying subdivisions
of uncommon non-rare diseases (those with prevalence between
200,000 and 500,000) starting in 1984. Summary statistics for the
number of new clinical trials for ODA-qualifying subdivisions of
traditional NORD diseases for 2 representative years are shown in

9 Clinical trials often span more than 17 years (DiMasi et al., 2003), so measuring
flow of new clinical trials avoids the problem of capturing decisions based on past
investment climates.
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Table 1 Panel A. The mean and distribution of counts by treat-
ment group are shown for 1983 and 1985, the year before and
after the critical 1984 amendment to the ODA was passed. Uncom-
mon non-rare diseases experience the largest relative increase in
R&D, a pattern consistent with Fig. 1. Note that the mass of the
counts clearly lies at zero, and the data tend to be over-dispersed.
Further, the distribution of counts differs by group. These char-
acteristics motivate the use of count regression models. Table 1
Panel B shows the summary statistics of the clinical trials for the
drugs indicated for (unsubdivided) traditionally defined NORD dis-
eases.

3.3. Estimation framework

The empirical analysis relies on a comparison of uncom-
mon non-rare diseases to control diseases. | interpret additional
change in the flow of ODA-qualifying subdivisions of uncommon
non-rare diseases to be an estimate for the extent of indication-
subdividing.

3.3.1. Prediction 1: incentive to subdivide around 200,000

To estimate the extent of subdividing for non-rare diseases, I use
a difference-in-differences (DD) approach that compares the num-
ber of clinical trials for ODA-qualifying subdivisions of uncommon
non-rare diseases to those of rare diseases, before and after the pas-
sage of the ODA. I estimate the following equation for the sample
of uncommon non-rare and rare diseases:

NST;; = f ao+Za[Year[+,81PostODAH—ﬁzUncommonJ\IonRare,-
t

+B3(PostODA = Uncommon_NonRare);; | + &j;. (1)

The outcome variable, NSTj, is the number of new clinical tri-
als for an ODA-qualifying subdivision of a NORD disease i in year
t. The variable Uncommon_NonRare is an indicator for whether the
(unsubdivided NORD) disease i has prevalence between 200,000
and 500,000.1° The variable PostODA is an indicator for the
1984-1994 post-ODA period. Single-year indicator variables are
included to capture trends in clinical trials for all diseases in the
sample. The coefficient of primary interest is B3, which measures
the increase in the yearly flow of new clinical trials for uncom-
mon non-rare diseases after the passage of the ODA, beyond that
which is observed for control diseases. In specifications that include
disease-specific fixed effects, the time-invariant effect of Uncom-
mon_NonRare is necessarily excluded.

In estimating Eq. (1), I am only able to use 3 years of data to
establish the pre-ODA trend in the flow of new clinical trials. This
motivates an alternative identification strategy: estimating changes
in flow of new clinical trials for the six status-changer diseases
whose prevalence grew to slightly above 200,000 during the study
period. As a proxy for the date when the estimated prevalence of
status-changer diseases grew past 200,000, I use the year the OOPD
last designated an orphan drug for that disease (Table 2). To iso-
late the impact of a change in rare-disease status, I estimate the

10 prevalence estimates for rare diseases found in the epidemiological literature
often report a range of estimates (i.e. 1:10,000 to 1:5000, or 25,000 to 50,000). Other
references explicitly report point estimates with confidence intervals. Thus there is
some degree of imprecision in prevalence point estimates. For this reason, it is more
appropriate to compare sets of control diseases by prevalence categories, rather than
directly regressing R&D effort on a continuous measure of disease prevalence.
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Table 1

Distribution of new clinical trial counts, by disease prevalence, for two representative years.

Rare Status changer

Non-rare (200k-500Kk) Non-rare (>500Kk)

Panel A: number of new trials for ODA-qualifying subdivisions of NORD diseases
1983

.001 (0.031)
75-percentile
90-percentile
95-percentile
99-percentile
Max

N 1023

=N =Nl
MO O OO OOo

1985

0.002 (0.044)
75-percentile 0
90-percentile 0
95-percentile 0
99-percentile 0
Max 1

N 1023

[ NelelolNolNelo]

Panel B: number of new clinical trials for unsubdivided NORD diseases
1983
0.017 (0.135) .333(0.516)

75-percentile 0
90-percentile 0
95-percentile 0
99-percentile 1
Max 2
N 1023

o R G G

1985

0.048 (0.274) 1.000 (2.000)
75-percentile 0
90-percentile 0
95-percentile 0
99-percentile 1

Max 4
N 1023

(o), BNE, IS, S, B

0.020 (0.141) 0.010 (0.101)
0 0
0 0
0 0
1 1
1 1
50 98
0.160 (0.468) 0.020 (0.142)
0 0
1 0
1 0
2 1
2 1
50 98
0.240 (0.591) 0.122 (0.503)
0 0
1 0
1 1
3 3
3 3
50 98
0.380(0.901) 0.082 (0.398)
0 0
2 0
3 1
4 3
4 3
50 98

In Panel A, the first row reports the mean number of new clinical trials in 1983 for ODA-qualifying subdivisions of NORD diseases. Means are reported by disease prevalence
group (standard deviations are reported in parentheses). The number of new clinical trials counts at the 75th, 90th, 95th, and 99th percentile of the distribution are shown
below. The summary table is repeated for 1985. Panel B shows the mean and distribution of new clinical trials for unsubdivided, traditionally defined, diseases in the NORD

list for 1983 and 1985.
following equation for only the 1984-1994 post-ODA:

NST; = f | oo + Z(x[Yeart + BqStatusChanger;
t

+B,Changed _from_Rare;; | + &;;. (2)

The variable of interest is Changed_from_Rare, an indicator for
when a status-changer disease loses its status as rare. The estimate
of B, represents the impact on the flow of new clinical trials for
ODA-qualifying subdivisions of status-changer diseases due to los-
ing rare status. The model predicts 8, will be positive. Consistent
estimation of B, requires that changes in disease prevalence are
exogenous to the outcome variable. This is likely to be the case
since the changes in demographics and diagnostic techniques that
determine prevalence are likely to be orthogonal to clinical trials
effort.1!

11 It is possible that innovation in drugs is associated with an improved ability to
diagnose a disease. Likewise, omitted variables, such as campaigns by drug manu-
facturers to raise awareness of diseases, would be associated with both greater R&D
levels and estimated prevalence (and loss of rare-disease status). These possibili-
ties bias the estimate of 8, away from zero and over-estimate the ODA impact on
subdividing. These endogeneity issues are unlikely to be significant in this setting

The functional form for Egs. (1) and (2) is chosen to account for
the nature of the data. The flow of new clinical trials is non-negative,
integer-valued, and has density at low values. This motivates use of
panel count regression models.'? Unlike the frequently employed
negative binomial (NB) models, which for consistent parameter
estimation requires that the data be distributed as NB (Hausman
et al,, 1984), the Poisson panel model has the advantage of being
consistent even when the data-generating process is misspecified
(Cameron and Trivedi, 1998). The Poisson model is consistent under
the weaker assumption that the conditional mean is correctly spec-
ified as linear-exponential. Further, the requirement that counts be
distributed as Poisson for consistent estimation of standard errors
is relaxed by estimating robust quasi-ML standard errors following
Wooldridge (1997,1999).

given that our measure of innovation is a new clinical trial. Unlike outcomes such
as newly approved drugs, new clinical trials (which may precede a drug approval
by a decade) are unlikely to influence awareness of a disease within the medical
community. [t may be that firms initiate disease awareness campaigns before drugs
are approved. However, this is more likely for prevalent diseases with large markets
and potentially large profit potential.

12 The flow of new clinical trials for rare disease is smaller than for non-rare dis-
eases. The impact of the ODA on the flow of new trials for rare diseases may be small
in absolute magnitude; but relative to the pre-ODA flow of new trials, the post-ODA
flow may be large. The proportional impact is not captured in a linear model, but it
is captured in the exponential form of typical count models.
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Table 2
Status changers.

Disease Year drug last Current prevalence
designated to estimate
treat disease

Crohn'’s disease? 1999 400,000

Systemic lupus erythematosus® 1999 400,000

Multiple sclerosis¢:9-¢ 1991 350,000

Sjogren syndromed-e.f 1992 2,000,000

HIV/AIDS# 1991 496,000

End stage renal diseaseM! 1990 350,000

Interstitial cystitisi- 1991 500,000

Paget’s disease of the bone! 1990 2,000,000

Lists eight status-changer disease. Only six of the diseases experienced a change
in rare disease status during the period studied in this paper (1981-1994). The first
column lists the year the OOPD last designated a drug for that specific disease indica-
tion. Citations for specific epidemiological studies for diseases that lost rare-disease
status were provided by John McCormick of the OOPD, and are listed in the footnotes
to this table.

2 Loftus, E.V., Schoenfeld, P.,, Sandborn, W.J., 2002. The epidemiology and natural
history of Crohn’s disease in population-based patient cohorts from North Amer-
ica: a systematic review. Aliment Pharmacol. Ther. 16 (January (1)), 51-60 (Medline
11856078).

b Hochberg, M.C., etal., 1995. Prevalence of self-reported physician-diagnosed sys-
temic lupus erythematosus in the USA. Lupus 4 (December (6)), 454-456 (Medline
8749567).

¢ Anderson, D.W,, et al., 1992. Revised estimate of the prevalence of multiple scle-
rosis in the United States. Ann. Neurol. 31 (March (3)), 333-336 (Medline 1637140).

d http://www3.niaid.nih.gov/.

¢ http://www.niams.nih.gov.

f Division of Oral Medicine, University of Minnesota, 1999. Sjogren’s Syndrome.
Quintessence Int. 30 (October (10)), 689-699 (Medline 10765853).

¢ http://www.cdc.gov.

h Trivedi, H.S., Pang, M.M., Campbell, A., Saab, P., 2002. Slowing the progression
of chronic renal failure: economic benefits and patients’ perspectives. Am. J. Kidney
Dis. 39 (April (4)), 721-729 (Medline 11920337).

I Xue, ].L., Ma,J.Z., Louis, T.A., Collins, AJ., 2001. Forecast of the number of patients
with end-stage renal disease in the United States to the year 2010.]. Am. Soc. Nephrol.
12 (December (12)), 2753-2758 (Medline 11729245).

I Curhan, G.C,, et al., 1999. Epidemiology of interstitial cystitis: a population based
study. J. Urol. 161 (February (2)), 549-552 (Medline 9915446).

kK http://www.niddk.nih.gov/.

! Altman, R.D., Bloch, D.A., Hochberg, M.C., Murphy, W.A., 2000. Prevalence of
pelvic Paget’s disease of bone in the United States. J. Bone Miner. Res. 15 (March (3)),
461-465 (Medline 10750560).

3.3.2. Prediction 2: diminishing incentive to subdivide more
prevalent diseases

[ estimate changes in the flow of new clinical trials for ODA-
qualifying subdivisions for uncommon non-rare diseases relative
to diseases with slightly higher prevalence. To do this, I partition
the 148 non-rare diseases in the NORD list into 50 “uncommon non-
rare” diseases that have prevalence between 200,000 and 5%, and
98 NORD diseases with prevalence exceeding 8%, Simple model
calibrations performed in Section 3.1 suggest 500,000 as an esti-
mate for 8540, | then estimate Eq. (1) comparing these two sets of
diseases. I interpret new clinical trials for ODA-qualifying subdivi-
sions of uncommon non-rare diseases - in excess of that which is
observed for more prevalent non-rare diseases in the NORD list —
to be evidence of indication-subdividing in response to the ODA.

4. Empirical results

The model presented in Section 2 suggests that there should
be a significantly greater incentive to subdivide uncommon non-
rare diseases relative to control diseases that have slightly lower or
slightly higher prevalence. As an informal test of these predictions,
I construct a variable that represents the fraction of all new clin-
ical trials for a given NORD disease devoted to an ODA-qualifying
subdivision over the entire post-ODA period (1984-1994). Fig. 2
shows the predicted values of a non-parametric regression of the

2

Subdivisions of NORD Diseases
.15

Fraction of Trials for ODA-Qualifying

T T T T T T T T T T
100 300 500 700 900 1100 1300 1500 1700 1900
Prevalence (in Thousands)

Fig. 2. Indication-subdividing among NORD diseases.

fraction of clinical trials devoted to ODA-qualifying subdivisions
over this period against the prevalence of the unsubdivided dis-
eases. I restrict the sample to diseases with prevalence higher than
100,000, and omit status-changer diseases. Fig. 2 clearly depicts an
inverted-U shape relationship. Around the 200,000 threshold, there
is a clear and dramatic positive relationship between the fraction of
new trials devoted to ODA-qualifying subdivisions of diseases and
the prevalence of the unsubdivided diseases. The regression also
exhibits a clear negative relationship for diseases with prevalence
that exceeds 500,000.

I compare uncommon non-rare diseases to more prevalent
non-rare diseases in the NORD list to test the predictions of
the model more formally. Note that back-of-the-envelope calcu-
lation for the cut-off prevalence that defines uncommon non-rare
diseases, 854> = 500,000, is consistent with the point where the non-
parametric regression in Fig. 1 turns sharply downward.

Section 4.1 through 4.2 formally quantify the extent to which
firms respond to the ODA by subdividing drug indications into ODA-
qualifying subdivisions of non-rare diseases. Whether this response
reflects new innovation is addressed in Section 5.

4.1. Incentive to subdivide disease indications

Eq. (1) specifies a DD approach to compare ODA-qualifying sub-
divisions of rare and non-rare diseases. Results of this estimation
are reported in Table 3. Column 1 compares uncommon-rare dis-
eases to more prevalent diseases in the NORD list. The results
indicate a positive and significant increase in the flow of trials for
ODA-qualifying subdivisions among all diseases associated with
the passage of the ODA. The flow of new trials for ODA-qualifying
subdivisions of uncommon non-rare diseases is significantly larger
than that of the more-prevalent control diseases. The coefficient
on the interaction term implies that the ODA led to a 460-percent
(=[exp(1.727) — 1] x 100) increase in the flow of new clinical trials
for ODA-qualifying subdivisions of uncommon non-rare diseases
relative to new trials for comparison diseases.

As in Finkelstein (2004) and Yin (2008), I also estimate Eq. (1)
including period-interaction terms. I include three PostODA(t, t);
variables that indicate whether a clinical trial for disease i began
in the first 3, 3-6, or 7 or more years after the ODA was passed.
The variable NonRare(200k, 500k) x PostODA(t, t') is the interaction
term between the prevalence category indicator and a PostODA
indicator. Results of this analysis are reported in column 2. Firms
appear to respond immediately to incentives to subdivide uncom-
mon non-rare diseases; they also appear to respond to the ODA
with greater intensity towards the end of the study period. Subdi-
viding of uncommon non-rare diseases was somewhat diminished
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Table 3
Subdividing uncommon non-rare diseases.

957

Dependent variable: No. of new clinical trials for ODA-qualifying subdivisions of NORD diseases

Treatment disease

“Uncommon” non-rare diseases (200k-500Kk)

Control disease Rare diseases (100k-200k)

Non-rare diseases (>500k)

Diseases (100k-200k) and diseases (>500k)

(1) (2) (3) (4) (5) (6)
PostODA 2.386" (1.261) 2.758" (1.019) 2.939"" (1.183)
NonRare(200k, 500k) x PostODA 1.727" (0.877) 0.684 (0.798) 1.349" (0.781)
PostODA_13 1.545 (1.341) 0.693 (0.681) 1.812(1.238)
PostODA_46 2.697" (1.304) 1.609 (0.662) 2.852"" (1.207)
PostODA_7plus 1.922 (1.229) 2.886"" (0.613) 2.833"" (1.183)
NonRare(200k, 500k) x PostODA_13 1.686" (0.972) 1.504" (0.683) 1.638" (0.852)
NonRare(200k, 500k) x PostODA_46 0.804 (0.901) 0.930 (0.711) 0.834(0.809)
NonRare(200k, 500k) x PostODA_7plus 2.255" (0.865) 0.532(0.847) 1.489" (0.794)
Year dummies Y Y Y Y Y Y
No. Rare Diseases(100k, 200k) 6 6 - - 6 6
No. of NonRare(200, 500k) diseases 22 22 22 22 22 22
No. of NonRare(>500k) diseases - - 14 14 14 14
Number of diseases 28 28 36 36 42 42
Observations 392 392 504 504 588 588

Reports the parameter estimates of the Poisson conditional fixed-effects regression. The dependent variable is the number of new clinical trials for an ODA-qualifying
subdivision of a disease in the NORD list in a given year. The fixed effects model drops all disease for which there are no counts in the time series. The variable NonRare(200k,
500k) is an indicator that takes 1 for diseases that have prevalence between 200,00 and 500,00. The variable PostODA is an indicator variable for observations in years after
the ODA passage. The PostODA_(t1, t2) variables are indicators for observations between years (t1, t2) after the ODA passage. Column headers note which diseases are included
in the sample specification. Regressions are estimated using single-year dummy variables. Quasi-ML estimation of standard errors were calculated following Wooldridge

(1997, 1999) and are reported in parentheses.
" Significant at 10%.
™ Significant at 5%.
™" Significant at 1%.

in the middle period. This is a result of greater subdividing of control
diseases over this middle sub-period.

I repeat these analyses using diseases with prevalence higher
than 640 =500,000 as a control. The results of this analysis are
reported in columns 3 and 4. Here, again, the results show that firms
responded immediately to the incentives to conduct new clinical
trials for ODA-qualifying subdivisions of uncommon non-rare dis-
eases. Declines in the intensity of indication-subdividing over the
study period are driven largely by increases in the flow of clinical
trials for ODA-qualifying subdivisions of the control diseases. Qual-
itatively similar results are reported in columns 5 and 6 where the
sample includes both sets of control diseases.

Coefficient estimates on the uninteracted PostODA(t, t) terms
suggest that the ODA is associated with substantial indication-
subdividing among control diseases. Thus, there may be reasons for
indication-subdividing in response to the ODA that are not modeled
in Section 2. For example, if heterogeneous patients incur search
costs (financial and clinical costs of inappropriate drug use) of find-
ing the best drug on the market for a given disease, then firms have
an incentive to make patients aware of the specific patient sub-
population for whom their drug is most beneficial. This may give
rise to incentives to subdivide any disease, even those with preva-
lence below 200,000 or above 852, Another possibility is that the
ODA broadly reduces the risk of conducting expensive clinical drug
trials. A subsidized clinical trial for an ODA-qualifying subdivision
of a drug’s potential market can be used to inform the firm of its
drug’s safety and efficacy for a larger indication, thereby reducing
the risk associated with larger and more expensive clinical trials.
These mechanisms would lead to observed subdividing among the
more prevalent control diseases in response to the ODA. However,
they do not predict that firms have a greater incentive to subdivide
uncommon non-rare diseases, as is observed empirically.

4.2. Time series variation in the incentives to subdivide

Status-changer diseases are not included in the estimation of Eq.
(1).Imeasure the impact of losing rare-disease status on indication-

subdividing among status-changer diseases by estimating Eq. (2).
Results are reported in Table 4. The columns report the coeffi-
cient estimate on Changed_from_Rare under several specifications
for comparison diseases. The coefficient estimates across the three
columns are fairly stable, suggesting that the loss of rare-disease
status led to a 350-percent (=[exp(1.5) — 1] x 100) increase in the
flow of clinical trials for ODA-qualifying subdivisions of the status-
changer diseases.

4.3. Secondary predictions

The model presented in Section 3 assumes that firms seek
off-label sales for drugs whose on-label market they strategically
reduce in order to qualify for the ODA-subsidy.'3 I test whether this
assumption is consistent with the data on drug prescriptions and
off-label sales. I compare off-label sales of drugs approved for an
ODA-qualifying subdivision of a non-rare disease to those of other
approved orphan drugs, conditional on the prevalence of the dis-
ease indication for which it was approved. Greater off-label sales
for drugs indicated for a subdivision of a non-rare disease would be
consistent with these drugs having larger potential markets than
the indications sought by firms. I estimate the following equation
on the sample of approved orphan drugs, i:

Total Rx; = exp(« + B1SubNonRare; + B,SubRare;

+ B3 log(OnLabelPop;) + BsApprovalYr;) + &;. (4)

The variable Total Rx represents the number of prescriptions
written for a given orphan drug, i in a given year, for the treatment

13 Consistent with this prediction, there have been several instances of abuse of
the ODA brought to the public’s attention (Rin-Laures and Janofsky, 1991; Senate
Sub-committee Hearings S.2060 1992; Maeder, 2003). In these cases, orphan drugs
were first approved to treat a rare disease and then were found to benefit patients
with much more prevalent diseases.
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Table 4
Indication-subdividing of status-changer diseases.

Dependent variable: number of new clinical trials for ODA-qualifying subdivisions of NORD diseases

Treatment disease Status-changer diseases

Control disease Rare diseases (100k-200k)

Non-rare diseases (200k-500Kk)

Diseases (100k-200k) and diseases (200k-500Kk)

(1) (2)

(3)

Changed from rare 1.306™ (0.204)

Single-year dummies Y Y
No. of diseases 9 25
Observations 99 275

15727 (0.228)

1.524™ (0.213)
e

31

341

Reports the parameter estimates of the Poisson conditional fixed-effects regression. The dependent variable is the number of new clinical trials for an ODA-qualifying
subdivision of a disease in the NORD list in a given year. The fixed effects model drops all disease for which there are no counts in the time series. Column headers note which
diseases are included in the sample specification. The variable Changed_from_Rare is an indicator that takes 1 when a disease is not rare, and 0 when a disease is rare. All
regressions include single-year dummy variables. Quasi-ML estimation of standard errors were calculated following Wooldridge (1997, 1999) and are reported in parentheses.

“Significant at 10%.
“significant at 5%.
™" Significant at 1%.

of any disease. The independent variables of interest are SubNon-
Rare and SubRare, indicators for whether the approved orphan drug
is indicated to treat an ODA-qualifying subdivision of a non-rare
or rare disease, respectively, in the NORD list. (The omitted cate-
gory comprises orphan drugs approved for an unsubdivided rare
disease.) ApprovalYr denotes the year the drug was approved for
marketing, and captures the time elapsed since the knowledge of
its uses first diffused through the market. Data on the number of
prescriptions in the US for each approved orphan drug are obtained
from the 2002 National Ambulatory Medical Care Survey. It pro-
vides data on the number of times drugs are prescribed in the US,
and the International Classification of Diseases (ICD) code associ-
ated with the prescription. Data for OnLabelPop, the prevalence of
the approved indication for each orphan drug, was obtained from
the FDA. A positive coefficient on SubNonRare would be consistent
with incentives underlying the model. Similarly, I expect the coef-
ficient on SubRare to be insignificant.} I estimate Eq. (4) on the
sample of 245 orphan drugs, where the outcome variable is the
number of prescriptions for the brand name drug. I find:

Total Rx; = exp(53.9 + 0.991 - SubNonRare; — 0.640-SubRare;
(84.5)  (0.53) (0.65)

+0.055 - log(OnLabelPop;) — 0.022 - ApprovalYr;).  (5)
(0.12) (0.04)

The estimate on SubNonRare suggests that on average orphan
drugs approved for a subdivision of a non-rare disease were
prescribed 170-percent more often than drugs approved for a tradi-
tional rare disease, conditional on the disease prevalence for which
they were approved. The coefficient on SubRare is not significantly
different from zero, consistent with the notion that such drugs were
not developed as a strategic response to restrict the on-label popu-
lation (and to sell extensively off-label) in order to acquire the ODA
incentives.!

14 Ideally, | would use off-label prescriptions as the outcome variable. However, the
NAMCS is sufficiently specific in coding disease diagnosis, making determination of
off-label prescriptions unclear. Instead, I use Total prescriptions for a given drug,
conditional on the market size of the approved indication. In theory, this should
yield identical point estimates, assuming diseases in the sample are similar in their
mapping from prevalence to market size.

15 Talso construct two binary outcome variables for drug prescriptions—whether a
drug appears in the 2002 NAMCS survey, and whether a drug appears in any previous
NAMCS survey. Aggregating all NAMCS surveys increases the likelihood that a given
drug is mentioned. [ estimate Eq. (4) in a probit framework, and find that orphan
drugs indicated to treat a subdivision of a non-rare disease are 36-percent more
likely to have been mentioned at least once in 2002, and 26-percent more likely to
have been mentioned in any prior survey. The coefficient on SubRare is insignificant

5. Quantifying the impact of the ODA on subdividing net of
inefficiencies

The response to the ODA reported in Section 4 does not neces-
sarily represent new innovation. As modeled in Section 2, some of
the observed response may represent R&D that would have been
conducted in the absence of the ODA. Neither the FDA nor the
tax authorities are able to identify which trials are conducted on
the margin in response to the ODA. Consequently, the ODA sub-
sidizes every drug trial indicated for ODA-qualifying subdivisions,
even if the R&D would have been conducted without the policy.
In an attempt to quantify this inefficiency, I estimate the extent to
which new clinical trials for ODA-qualifying subdivisions of uncom-
mon non-rare diseases are offset by simultaneous declines in new
clinical drug trials for the corresponding unsubdivided tradition-
ally defined disease indications. Data on new clinical trials for
drugs indicated for traditionally defined disease are summarized
in Table 1 Panel B.

I re-estimate Eq. (1), however now I use counts of new clini-
cal trials for unsubdivided NORD diseases as the outcome. I test
whether the ODA is also associated with declines in the flow of
new trials for unsubdivided indications of uncommon non-rare dis-
eases. I use NORD diseases with prevalence exceeding 500,000 as a
control (drug development for these diseases - subdivided or oth-
erwise - should be unaffected by the ODA). I interpret declines in
R&D for unsubdivided uncommon non-rare diseases after the ODA
passage, relative to larger non-rare NORD diseases, as evidence of
redefining indications for drugs that would have been developed
in the absence of the ODA.

Status-changer diseases offer a second setting in which ineffi-
ciencies can occur. | re-estimate Eq. (2) using new clinical trials for
unsubdivided status-changer diseases as the dependent variable. |
look for evidence of declines in the flow of new trials for the unsub-
divided disease indications as evidence of indication-subdividing
for these diseases.

Results of this analysis are reported in Table 5. Columns 1
and 2 report the results of estimating Eq. (1), using new trials
for ODA-qualifying subdivisions of sample diseases and for the
unsubdivided diseases, respectively. (Column 1 reports results from
Table 3 column 2.) I find that the ODA was not associated with
declines in new clinical trials for unsubdivided uncommon non-
rare diseases. In fact, the flow of new trials for these diseases moves

in both regressions. In these regressions, the coefficient on the year of approval is
negative and precisely estimated, suggesting that market penetration and diffusion
of knowledge about the use of drugs is not immediate.
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Table 5
Substitution towards ODA-qualifying subdivisions of NORD diseases.

Treatment disease Non-rare diseases (200k-500Kk) Status-changer diseases

Control disease Non-rare diseases (>500k) Rare diseases (100k-200k)

Dependant variable: no. of new clinical trials ODA-qualifying subdivisions Unsubdivided indications ODA-qualifying Unsubdivided
subdivisions indications
(1) (2) (3) (4)
PostODA_13 1.545 (1.341) 0.454 (0.554)
PostODA_46 2.697" (1.304) 1.365" (0.561)

PostODA_7plus 1.922" (1.123) 1.515" (0.563)

NonRare(200k, 500k) x PostODA-13 1.686" (0.972) 0.452 (0.454)

NonRare(200k, 500k) x PostODA_46 0.804 (0.901) 0.393 (0.468)

NonRare(200k, 500k) x PostODA_7plus 2.255" (0.865) 0.379 (0.441)

Changed from rare 1.306™ (0.204) —0.287" (0.105)
Single year dummies Y Y Y Y

No. of diseases 36 54 9 15

Observations 504 756 99 165

Reports the parameter estimates of the Poisson conditional fixed-effects regression. This table compares the extent to which new clinical trials for ODA-qualifying subdivisions
of uncommon non-rare diseases offset clinical trials for drugs indicated for the unsubdivided disease indication that would have been developed in absence of the ODA. The
dependent variable in column (1) is the number of new clinical trials for an ODA-qualifying subdivision of a disease in the NORD. The dependent variable in column (2) is
the number of new clinical trials for an unsubdivided NORD disease in a year from 1981 to 1994. A similar comparison can be made for the flow of new clinical trials for
status-changer diseases in columns (3) and (4) for the 1984-1994 post-ODA period. Note that columns (1) and (3) are preferred specifications taken from Tables 3 and 4.
The fixed effects model drops all disease for which there are no counts in the time series. The variable NonRare(200k, 500k) is an indicator that takes 1 for diseases that have
prevalence between 200,000 and 500,000. The variable PostODA is an indicator variable for observations in years after the ODA passage. The PostODA_(t1, t2) variables are
indicators for observations between years (t1, t2) after the ODA passage. The variable Changed_from_Rare is an indicator that takes 1 when a disease is not rare, and 0 when
a disease is rare. All regressions included single-year dummy variables. Quasi-ML estimation of standard errors were calculated following Wooldridge (1997, 1999) and are

reported in parentheses.
" Significant at 10%.
™ Significant at 5%.
™" Significant at 1%.

in lock-step with the more prevalent NORD diseases. The analysis
of status-changer diseases provides evidence of inefficiencies. The
269-percent increase in the flow of new trials for ODA-qualifying
subdivisions of status-changer diseases (column 3) is offset by
a simultaneous 25-percent decline in the flow of new trials for
unsubdivided status-changer diseases when these diseases lose
rare-disease status (column 4).

These percentage impacts are estimated off of different base
flow rates. To quantify the inefficiencies in levels, I calculate the
predicted increase in the aggregate number of new clinical trials
attributed to the ODA. This accounting exercise suggests that the
ODA led to 29 new clinical trials for subdivided indications of status-
changer diseases over this period (based on Table 5 column 3),
and to a simultaneous decline of 18 new clinical trials for unsubdi-
vided status-changer disease indications (based on Table 5 column
4).

The total impact of the ODA on new clinical trials for ODA-
qualifying subdivisions of uncommon non-rare diseases can be
measured in the same way. Results reported in Table 3 column
2 for uncommon non-rare diseases (also reported in Table 5 col-
umn 1) suggest that the ODA led to approximately 156 new clinical
trials. Thus, in total the ODA led to 185 new clinical trials for ODA-
qualifying subdivisions of uncommon non-rare NORD diseases. This
impact is similar in magnitude to the effect of the ODA on inno-
vation in traditional rare-disease drugs that was estimated in Yin
(2008). The evidence of simultaneous declines in R&D of drugs for
unsubdivided NORD diseases suggests that at least 18 new trials
- or roughly 10-percent - represent trials that would have been
conducted in the absence of the ODA but are nevertheless subsi-
dized.

6. Conclusion
This paper studies how innovation policy impacts private phar-

maceutical innovation. Specifically, I examine the ODA, which
created supply and demand-side incentives for the development

of rare-disease drugs. While prior studies of the ODA have focused
innovation in traditionally defined rare-disease drug markets, this
study examines innovation in non-rare disease drugs. In theory, the
policy’s definition of a rare disease (any disease with US preva-
lence below 200,000) gives firms an incentive to carve out new
ODA-qualifying diseases from patient populations with tradition-
ally defined diseases.

Evidence reported in this paper bears out these predictions. I
find robust evidence that the ODA encourages firms to develop
drugs for ODA-qualifying subdivisions of non-rare diseases. Fur-
ther, the impact on drugs that treat ODA-qualifying subdivisions
of non-rare diseases is equal in magnitude to the impact mea-
sured on traditional rare-disease drug development estimated in
earlier work (Yin, 2008). Commonly observed subdivisions in the
raw clinical trials data include subpopulations that are refractory to
existing therapies, have a severe or progressed form of a disease, or
have key co-morbidities or other characteristics that differentiate
patients according to their risk-benefit profile of drug utiliza-
tion. To the extent that the observed differentiation leads to more
tailored and personalized drug therapies (i.e. to a lower average
“distance” between patients and the nearest drug on the disease cir-
cle), subsidizing drug innovation for small disease populations may
increase average clinical benefits experienced by patients. Indeed,
the development of personalized drugs that treat narrowly defined
subsets of patients within broadly defined disease populations is
widely thought to be a promising direction for future drug research
(Haffner et al., 2002; Collins et al., 2003; Couzin, 2005).

This paper also shows that there are modest trade-offs associ-
ated with this innovation policy. Policies that subsidize unobserved
effort may finance effort that is privately lucrative to agents, but not
in line with the objectives of the principal (Lazear, 1996). Subsidiz-
ing innovation that would have been conducted in the absence of
the policy is one example of how subsidizing R&D may yields little
new innovation (Kremer, 2001; Hall, 2002). Calculations in Section
5 suggest that roughly 10-percent of new clinical trials for ODA-
qualifying subdivisions of non-rare diseases represent R&D that
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would have been conducted in the absence of the policy, but are
nevertheless subsidized. Relative to all the new clinical trials that
were conducted in response to the ODA, this inefficiency accounts
forroughly 5-percent of the total response to the policy. While mod-
est in size, it suggests that reducing agency-related inefficiencies
should be considered when designing innovation policy.

The nature of information asymmetries make it impossible for
regulators to identify which clinical trials would have been con-
ducted without ODA incentives. At best, regulators could limit
indication-subdividing in general. A number of actions could be
triggered when an approved orphan drug is found to generate large
off-label revenues. For example, revenues in excess of a prede-
termined return on investment could be taxed. A more extreme
measure would combine an excess revenue tax with an ODA tax
credit repayment penalty. Whether a policy placed greater weight
on the repayment penalty or the excess off-label revenue tax would
ideally depend on the extent to which taxes are expected to be
passed on to consumers.!® In principle, measures such as these
would not affect R&D that would be conducted in absence of
ODA incentives. The burden of inefficiency would be reduced as a
consequence. However, these measures would also disincentivize
R&D effort in disease subdividing which, in absence of the ODA,
would not be conducted. Hence, the effectiveness of the proposed
measures would depend on the benefit of reducing inefficiencies
relative to the value of forgone innovation.

Similar (imperfect) attempts at limiting agency-related ineffi-
ciencies in R&D policies are found in the context of national R&D
tax policies. To avoid subsidizing innovation that would occur in

16 In cases where an orphan drug is found to generate excessive revenues for its
indicated on-label population, regulators could also limit or revoke the market exclu-
sivity provision. For example, the FDA could grant granting marketing approval for
the same drug for the same rare disease to a competitor. Such a provision was
included in the 1990 amendment to the ODA. Under the amendment, a firm earning
excessive revenues would have to share its marketing exclusivity with a competitor
in cases where the competitor applied for marketing approval for the same drug and
indication, but was beaten out by the first firm. The President vetoed the amend-
ment on the grounds that it weakened a key incentive of the ODA (Rin-Laures and
Janofsky, 1991).

the absence of R&D tax incentives, many OECD countries subsi-
dize incremental R&D only, where incremental is defined as current
R&D expenditures less a firm’s baseline level of R&D spending (Hall
and Van Reenen, 2000). In these contexts, regulators are unable to
determine the true baseline R&D levels (the firms’ choice of R&D
expenditures absent the tax incentive), and instead measure it as
some moving average of R&D expenditures from previous years. In
cases where the observed baseline is higher (lower) than the true
unobserved baseline, the incremental tax discourages (encourages)
additional innovation on the margin. As in the ODA context, provi-
sions that attempt to limit agency-related inefficiencies may also
weaken the main innovation incentives on the margin.

Finally, note that indication-subdividing may confer some ben-
efits to patients, even for drugs that would have been developed
without the ODA policy. Narrower labels help to identify subsets
of patients for whom the drug may be especially beneficial. This
information may reduce the cost of searching for the most appro-
priate drug. Search costs can be either financial or health-related
in nature. Suboptimal drug consumption may be associated with
longer duration of illness, worsening health, or simply a longer
duration of unnecessary side-effects. Existence of costly search
motivates innovation in diagnostic technologies, which may offer
a second promising direction for growth in personalized medicine
(Aspinall and Hamermesh, 2007).

Appendix A.

Tables A1 and A2.
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Table A1
Counting of clinical trials.
NDA pipeline data Coding
Line Drug Generic name Indication Trial phase New trial NORD# Orphan subdivision
Johnson & Johnson (1987)
1 Epidermal growth factor, Severe burn IND
biosynthetic
2 . Thymoxamine HCI Phenylephrine-induced mydriasis
3 Motilium Domperidone Parkinson’s Clinicals
4 Gonadorelin acetate Ovulation induction NDA Pend.
5 Histrelin Precocious puberty Clinicals
6 Tepoxalin Psoriasis Clinicals
7 Retin-A Tretinoin Psoriasis Clinicals
8 Immunox Thymopentin (TP-5) AIDS Clinicals
9 Vaccine Hepatitis B Clinicals
10 Sibelium Flunarizine Epilepsy 11
11 Sibelium Flunarizine Alternating hemiplegia
12 Sporanox Itraconzanole Anti-fungal Clinicals
Johnson & Johnson (1988)
13 Epidermal growth factor, Severe burn Preclinicals
biosynthetic
14 Thymoxamine HCI Phenylephrine-induced mydriasis
15 Histrelin Precocious puberty Clinicals
16 Gonadorelin acetate Ovulation induction NDA Pend.
17 Eprex Erythropoietin (EPO) AIDS Clinicals 1 5 0
18 Eprex Erythropoietin (EPO) Anemia Clinicals 1 1178 0
19 Eprex Erythropoietin (EPO) Anemia of prematurity (orphan) Clinicals 1 1178 1
20 Eprex Erythropoietin (EPO) Severe anemia assoc. W/AZT in AIDS Clinicals 1 1178 1
(orphan)
21 Tepoxalin Psoriasis Clinicals
22 Tepoxalin Atopic dermatitis Clinicals 1 815 0
23 Immunox Thymopentin (TP-5) AIDS Clinicals
24 Vaccine Hepatitis B Clinicals
25 Motilium Domperidone Parkinson’s il
26 Sibelium Flunarizine Epilepsy 11
27 Sibelium Flunarizine Alternating hemiplegia Clinicals 1 623 0
28 Sporanox Itraconzanole Cryptoccocal meningitis Il 1 807 0

The table shows a portion of a typical data table from the NDA Pipeline, sampled from years 1987 and 1988 for Johnson & Johnson. Since the analysis uses new clinical trials as
the main outcome variable, 1987 and 1988 data are used to generate data on new clinical trials for 1988. The methodology used to code the raw data is described below. Step
1: Identify new human clinical drug trials in 1988 that do not appear in 1987. (Identified as “1” in the column New Trial.) Several decisions were made for consistency. (A) The
year associated with the start of a new trial for a disease in the NORD list was determined to be the first year the trial was explicitly indicated for that disease. For example,
trials for Sporonox (line 12) had begun by 1987, but only in 1988 did the NDA Pipeline record that it was in trials to treat cryptoccocal meningitis (CM) (line 28). Therefore,
the trial for CM is coded to have begun in 1988. Note that by 1988, the trial is in phase II. 1988 was chosen (rather than predating the trial for CM to the year Sporanox first
appears in the journal) because it is very possible that J&] conducted phase I trials without having decided that Sporanox was best suited to treat MC, specifically, among
other types of bacterial infections until phase II trials. (B) Likewise, had Eprex appeared in 1987 to treat anemia and AIDS, then among Eprex trials in 1988, only the trials for
anemia of prematurity and for severe anemia for AIDS patients taking AZT (lines 19, 20) would be considered new trials. The trials for AIDS and anemia would be considered
unique trials, as they are listed as separate trials in subsequent volumes of the NDA Pipeline. (C) Sibelium is listed in 1987 for alternating hemiplegia (line 11). The Trial Phase
cell is blank, suggesting that a firm has self-reported plans to begin trials for an indication. In 1988 (line 27) Sibelium is first recorded to be in a specific stage of trials for
alternating hemiplegia; so I record the trial start year to be 1988. Step 2: Record the NORD disease identifying number, which I previously assigned to every diseases in the
NORD list. Identifying the NORD identifying number allows for mapping back to other disease characteristics when later merged with the main data tables. Step 3: Determine
if the drug indication is an ODA-qualifying subdivision. Often, the NDA Pipeline will report whether the drug indication is an orphan indication (as it does in lines19 and 20).
Identifying a trial as an orphan is often based on firms having already sought orphan designation from the OOPD. Other times, it is based on orphan status of a previous trial
for the same indication. Subdivisions of an already rare disease were ipso facto recorded as an orphan indication.

Table A2
Typology of diseases indications.

Drug indication Example(s) Coding of example(s) Coding: subdivided or

unsubdivided indication

Disease X Infant respiratory distress syndrome Indication: infant respiratory distress Unsubdivided
syndrome
Subpopulation: none

Symptom of disease Y Muscle contracture in cerebral palsy Indication: cerebral palsy Unsubdivided
Subpopulation: none

Disease X associated with disease Y Pneumocystis Carinii infection Indication: pneumocystis Carinii Subdivided

associated with AIDS

infection
Subpopulation: for patients with AIDS
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Table A2 (Continued)

Drug indication Example(s)

Coding: subdivided or
unsubdivided indication

Coding of example(s)

Disease X, for patients of type Y Crohn’s disease refractory to

conventional therapy

Neutropenia where neotrophil counts
are below 500 mm~—3

Advanced case of disease X Stage III-IV malignant melanoma

Disease X, specific subtype Xi Gaucher's disease, type |

Relapsing and remitting multiple
sclerosis

Indication: Crohn’s disease Subdivided
Subpopulation: for patients refractory
to conventional therapy

Indication: neutropenia Subdivided
Subpopulation: for patients with
neotrophil counts below 500 mm~—3
Indication: malignant melanoma
Subpopulation: patients with stage III
or IV melanoma

Indication: Gaucher’s disease
Subpopulation: patients with type I
Indication: multiple sclerosis

Subdivided

Subdivided
Subdivided

Subpopulation: patients with relapsing
and remitting type

Lists the types of drug indications found in the NDA Pipeline and how determinations were made regarding whether an indication was coded as a subdivision of a NORD
disease. Within sample, this typology provides an exhaustive list of every type of NORD disease subdivision encountered in the data collection. Examples of each typological

subdivision is provided, as well as how such a clinical trial was coded.
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